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Abstract. In software-defined networking (SDN), a controller program
updates the forwarding rules installed on network packet-processing de-
vices in response to events. Such programs are often physically dis-
tributed, running on several nodes of the network, and this distributed
setting makes programming and debugging especially difficult. Further-
more, bugs in these programs can lead to serious problems such as packet
loss and security violations. In this paper, we propose a program syn-
thesis approach that makes it easier to write distributed controller pro-
grams. The programmer can specify each sequential process, and add a
declarative specification of paths that packets are allowed to take. The
synthesizer then inserts enough synchronization among the distributed
controller processes such that the declarative specification will be satis-
fied by all packets traversing the network. Our key technical contribution
is a counterexample-guided synthesis algorithm that furnishes network
controller processes with the synchronization constructs required to pre-
vent any races causing specification violations. Our programming model
is based on Petri nets, and generalizes several models from the networking
literature. Importantly, our programs can be implemented in a way that
prevents races between updates to individual switches and in-flight pack-
ets. To our knowledge, this is the first counterexample-guided technique
that automatically adds synchronization constructs to Petri-net-based
programs. We demonstrate that our prototype implementation can fix
realistic concurrency bugs described previously in the literature, and that
our tool can readily scale to network topologies with 1000+ nodes.

1 Introduction

Software-defined networking (SDN) enables programmers or network operators
to more easily implement important applications such as traffic engineering,
distributed firewalls, network virtualization, etc. These applications are typically
event-driven, in the sense that the packet-processing behavior can change in
response to network events such as topology changes, shifts in traffic load, or
arrival of packets at various network nodes. SDN enables this type of event-driven
behavior via a controller machine that manages the network configuration, i.e.,
the set of forwarding rules installed on the network switches. The programmer
can write code which runs on the controller, as well as instruct the switches to
install custom forwarding rules, which inspect incoming packets and move them
to other switches or send them to the controller for custom processing.



2 Jedidiah McClurg, Hossein Hojjat, and Pavol Cerny

Concurrency in Network Programs. Although SDN provides the abstraction of
a centralized controller machine, in reality, network control is often physically
distributed, with controller processes running on multiple network nodes [13].
The fact that these distributed programs control a network which is itself a dis-
tributed packet-forwarding system means that event-driven network applications
can be especially difficult to write and debug. In particular, there are two types
of races that can occur, resulting in incorrect behavior. First, there are races
between updates of forwarding rules at individual switches, or between packets
that are in-flight during updates. Second, there are races among the different
processes of the distributed controller. We call the former packet races, and the
latter controller races. Bugs resulting from either of these types of races can lead
to serious problems such as packet loss and security violations.

Tllustrative Example. Let us examine the difficulties of writing distributed con-
troller programs, in regards to the two types of races. Consider the network
topology in Figure la. In the initial configuration, packets entering at H1 are for-
warded through S1, 55,52 to H2. There are two controllers (not shown), C'1 and
C2—controller C'1 manages the upper part of the network (H1, 51, 55,53, H3),
and C2 manages the lower part (H2,52, 55,54, H4). Now imagine that the net-
work operator wants to take down the forwarding rules that send packets from
H1 to H2, and instead install rules to forward packets from H3 to H4. Further-
more, the operator wants to ensure that the following property ¢ holds at all
times: all packets entering the network from H1 must exit at H2. When devel-
oping the program to do this, the network operator must consider the following:
— Packet race: If C'1 removes the rule that forwards from S1 to S5 before
removing the rule that forwards from H1 to S5, then a packet entering at
H1 will be dropped at S1, violating specification ¢.
— Controller race: Suppose C'1 makes no changes, and C2 adds rules that
forward from S5 to S4, and from S4 to H4. In the resulting configuration,
a packet entering at H1 can be forwarded to H4, again violating ¢.

Our Approach. We present a program synthesis approach that makes it easier to
write distributed controller programs. The programmer can specify each sequen-
tial process (e.g., C1 and C2 in the previous example), and add a declarative
specification of paths that packets are allowed to take (e.g., ¢ in the previous
example). The synthesizer then inserts synchronization constructs that constrain
the interactions among the controller processes to ensure that the specification
is always satisfied by any packets traversing the network. Effectively, this allows
the programmer to reduce the amount of effort spent on keeping track of possi-
ble interleavings of controller processes and inserting low-level synchronization
constructs, and instead focus on writing a declarative specification which de-
scribes allowed packet paths. In the examples we have considered, we find these
specifications to be a clear and easy way to write desired correctness properties.

Network Programming Model. In our approach, similar to network programming
languages like OpenState [6], and Kinetic [20], we allow a network program to be
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described as a set of concurrently-operating finite state machines (FSMs) con-
sisting of event-driven transitions between global network states. We generalize
this by allowing the input network program to be a set of event nets, which are
1-safe Petri nets where each transition corresponds to a network event, and each
place corresponds to a set of forwarding rules. This model extends network event
structures [25] to enable straightforward modeling of programs with loops. An
advantage of extending this particular programming model is that its programs
can be efficiently implemented without packet races (see Section 3 for details).

Problem Statement. Our synthesizer has two inputs: (1) a set of event nets
representing sequential processes of the distributed controller, and (2) a linear
temporal logic (LTL) specification of paths that packets are allowed to take. For
example, the programmer can specify properties such as “packets from H1 must
pass through Middlebox S5 before exiting the network.” The output is an event
net consisting of the input event nets and added synchronization constructs, such
that all packets traversing the network satisfy the specification. In other words,
the added synchronization eliminates problems caused by controller races. Since
we use event nets, which can be implemented without packet races, both types
of races are eliminated in the final implementation of the distributed controller.

Algorithm. Our main contribution is a counterexample-guided inductive synthe-
sis (CEGIS) algorithm for event nets. This consists of (1) a repair engine that
synthesizes a candidate event net from the input event nets and a finite set of
known counterexample traces, and (2) a verifier that checks whether the candi-
date satisfies the LTL property, producing a counterexample trace if not. The
repair engine uses SMT to produce a candidate event net by adding synchroniza-
tion constructs which ensure that it does not contain the counterexample traces
discovered so far. Repairs are chosen from a variety of constructs (barriers, locks,
condition variables). Given a candidate event net, the verifier checks whether it
is deadlock-free (i.e., there is an execution where all processes can proceed with-
out deadlock), whether it is 1-safe, and whether it satisfies the LTL property.
We encode this as an LTL model-checking problem—the check fails (and returns
a counterexample) if the event net exhibits an incorrect interleaving.

Contributions. This paper contains the following contributions:

— We describe event nets, a new model for representing concurrent network
programs, which extends several previous approaches, enables using and
reasoning about many synchronization constructs, and admits an efficient
distributed implementation (Sections 2-3).

— We present synchronization synthesis for event nets. To our knowledge, this
is the first counterexample-guided technique that automatically adds syn-
chronization constructs to Petri-net based programs. Our solution includes
a model checker for event nets, and an SMT-based repair engine for event
nets which can insert a variety of synchronization constructs (Section 4).

— We show the usefulness and efficiency of our prototype implementation, using
several examples featuring network topologies of 1000+ switches (Section 5).
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Fig. 1: Example #1

2 Network Programming using Event Nets

Network programs change the network’s global forwarding behavior in response
to events. Recently proposed approaches such as OpenState [6] and Kinetic [20]
allow a network program to be specified as a set of finite state machines, where
each state is a static configuration (i.e., a set of forwarding rules at switches),
and the transitions are driven by network events (packet arrivals, etc.). In this
case, support for concurrency is enabled by allowing FSMs to execute in parallel,
and any conflicts of the global forwarding state due to concurrency are avoided
by either requiring the FSMs to be restricted to disjoint types of traffic, or by ig-
noring conflicts entirely. Neither of these options solves the problem—as we will
see here (and in the Evaluation), serious bugs can arise due to unexpected inter-
leavings. Overall, network programming languages typically do not have strong
support for handling (and reasoning about) concurrency, and this is increasingly
important, as SDNs are moving to distributed or multithreaded controllers.

Event Nets for Network Programming. We introduce a new approach which ex-
tends the finite-state view of network programming with support for concurrency
and synchronization. Our model is called event nets, an extension of 1-safe Petri
nets, a well-studied framework for concurrency. An event net is a set of places
(denoted as circles) which are connected via directed edges to events (denoted
as squares). The current state of the program is indicated by a marking which
assigns at most one token to each place, and an event can change the current
marking by consuming a token from each of its input places and emitting a to-
ken to each of its output places. Since event nets model network programs, each
place is labeled with a static network configuration, and at any time, the global
configuration is taken as the union of the configurations at the marked places.

Figure 1b shows an example event net. We will use integer IDs (and alterna-
tively, colors) to distinguish static configurations. Figure la shows the network
topology corresponding to this example. In a given topology, the configurations
associated with the event net are drawn in the color of the places which contain
them, and also labeled with the corresponding place IDs. For example, place 3
in Figure 1b is orange, and this corresponds to enabling forwarding along the
orange path H3, 53,55 (labeled with “3”) in the topology shown in Figure la. In
the initial state of this event net, places 1,4 contain a token, meaning forwarding
is initially enabled along the red (1) and green (4) paths.
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Event Nets and Synchronization. Event nets allow us to specify synchronization
easily. In Figure lc, we have added places 7,8—this makes event C' unable to
fire initially (since it does not have a token on input place 8), forcing it to wait
until event B fires (B consumes a token from places 2,7 and emits a token at
8). Ultimately, we will show how these types of synchronization skeletons can be
produced automatically. In Figure 1(b-d), the original event net is shown in black
(solid lines), and synchronization constructs produced by our tool are shown in
blue (dashed lines). We will now demonstrate by example how our tools works.

Ezample—Tenant Isolation in a Datacenter. Koponen et al. [21] describe an ap-
proach for providing virtual networks to tenants (users) of a datacenter, allowing
them to connect virtual machines (VMs) using virtualized networking function-
ality (middleboxes, etc.). An important aspect is isolation between tenants—one
tenant intercepting another tenant’s traffic would be a severe security violation.

Let us extend the example described in the Introduction. In Figure 1la, S5 is
a physical device initially being used as a virtual middlebox processing Tenant
X’s traffic, which is being sent along the red (1) and green (4) paths. We wish to
perform an update in the datacenter which allows Tenant Y to use S5, and moves
the processing of Tenant X’s traffic to a different physical device. For efficiency,
let us use two controllers to execute this update—path 1 is taken down and path
3 is brought up by C1, and path 4 is taken down and path 6 is brought up by
C2. The event net for this program is shown in Figure 1b. The combinations of
configurations 1,6 and 4,3 both allow traffic to flow between tenants, violating
isolation. We can formalize the isolation specification as follows:

1. ¢1: no packet originating at H1 should arrive at H4, and
2. ¢2: no packet originating at H3 should arrive at H2.

Properties like these which describe single-packet traces can be encoded straight-
forwardly in linear temporal logic (LTL) (note that instead of LTL, we could
use the more user-friendly PDL). Given an LTL specification, we ask a verifier
whether the event net has any reachable marking whose configuration violates
the specification. If so, a counterexample trace is provided, i.e., a sequence of
events (starting from the initial state) which allows the violation. For exam-
ple, using the specification ¢; A ¢ and the Figure 1b event net, our verifier
informs us that the sequence of events C, D leads to a property violation—in
particular, when the tokens are at places 6, 1, traffic is allowed along the path
H1,51,55,54, H4, violating ¢;. Next, we ask a repair engine to suggest a fix for
the event net which disallows the trace C, D, and in this case, our tool produces
lc. Again, we call the verifier, which now gives us the counterexample trace A, B
(when the tokens are at 4, 3, traffic is allowed along the path H3, 53, 55,52, H2,
violating property ¢s). When we ask the repair engine to produce a fix which
avoids both traces C, D and A, B, we obtain the event net shown in 1d. A final
call to the verifier confirms that this event net satisfies both properties.

The synchronization skeleton produced in Figure 1d functions as a barrier—
it prevents tokens from arriving at 6 or 3 until both tokens have moved from 4, 1.
This ensures that 1,4 must both be taken down before bringing up paths 3, 6.
The following sections detail this synchronization synthesis approach.
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3 Synchronization Synthesis for Event Nets

Before describing our synthesis algorithm in detail, we first need to formally
define the concepts/terminology mentioned so far.

SDN Preliminaries. A packet pkt is a record of fields {fi; fo; - - - ; fn }, where fields
f represent properties such as source and destination address, protocol type,
etc. The (numeric) values of fields are accessed via the notation pkt.f, and field
updates are denoted pkt[f < n|, where n is a numeric value. A switch sw is a
node in the network with one or more ports pt. A host is a switch that can be a
source or a sink of packets. A location [ is a switch-port pair n:m. Locations may
be connected by (bidirectional) physical links (l;, k). The graph formed using
the locations as nodes and links as edges is referred to as the topology. We fix
the topology for the remainder of this section.

A located packet lp = (pkt,sw,pt) is a packet and a location sw:pt. A
packet-trace (history) h is a non-empty sequence of located packets. Packet
forwarding is dictated by a network configuration C. We model C as a rela-
tion on located packets: if C(Ip,Ip’), then the network maps Ip to Ip’, possi-
bly changing its location and rewriting some of its fields. Since C is a rela-
tion, it allows multiple output packets to be generated from a single input. In
a real network, the configuration only forwards packets between ports within
each individual switch, but for convenience, we assume that C also captures
link behavior (forwarding between switches), i.e. C((pkt,n1,m1), (pkt,ne, msa))
and C((pkt,n2, ma), (pkt,n1,m1)) hold for each link (ni:mq,ng:mse). Consider a
packet-trace h = Ipglplps - - - Ip,,. We say that h is allowed by configuration C
if and only if V1 < k < n. C(lp;_4,Ip;), and we denote this as h € C.

Petri Net Preliminaries. Our treatment of Petri nets closely follows that of
Winskel [35] (Chapter 3). A Petri net N is a tuple (P, T, F, M), where P is a
set of places (shown as circles), T is a set of transitions (shown as squares), F C
(Px T)U(T x P) is a set of directed edges, and My is multiset of places denoting
the initial marking (shown as dots on places). For notational convenience, we
can view a multiset as a mapping from places to integers, i.e., M (p) denotes the
number of times place p appears in multiset M. We require that P # ), and
Vpe P.(My(p) >0V (3te T.((p,t) e FV(t,p) € F))),and Vt € T.3p1,p2 €
P.((p1,t) € F A (t,p2) € F). Given a transition ¢, we define its post- and pre-
places as t* = {p € P : (t,p) € F} and *t = {p € P : (p,t) € F} respectively.
This can be extended in the obvious way to 7”® and ®* 7', for subsets 7" of T.
A marking indicates the number of tokens at each place. We say that a
transition t € T is enabled by a marking M if and only if Vp € P. ((p,t) € F =
M (p) > 0), and we use the notation 7" C M to mean that all ¢ € T are enabled
by M. A marking M; can transition into another marking M;,; as dictated by

the firing rule: M; — M1 <= T’ C M; A M1 = M; —*T'+ T, where the
— /4 operators denote multiset difference/union respectively. The state graph of a
Petri net is a graph where each node is a marking (the initial node is Mp), and an
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edge (M; SN M;) is in the graph if and only if we have M; ﬁ> M in the Petri net.
A trace 7 of a Petri net is a sequence fyt; - - - t, such that there exist M; L, M; 11
in the Petri net’s state graph, for all 0 < i < n. We define markings(toty - - - t,,)
to be the sequence MyM; --- My, 41, where My o, My by Iy My41 is in
the state graph. We can project a trace onto a Petri net (denoted 7 > N) by
removing any transitions in 7 which are not in N. A I-safe Petri net is a Petri
net in which for any marking M; reachable from the initial marking M, we have
Vo € N.(0 < Mj(xz) < 1), i.e., there is no more than 1 token at each place.

Event Nets. An event is a tuple (¢, 1), where [ is a location, and 1 can be any
predicate over network state, packet locations, etc. For instance, in [25], an event
encodes an arrival of a packet with a header matching a given predicate to a
given location. A labeled net L is a pair (N, ), where N is a Petri net, and
A labels each place with a network configuration, and each transition with an
event. An event net is a labeled net (N, \) where N is 1-safe.

Semantics of Fvent Nets. Given event net marking M, we denote the global
configuration of the network C'(M), given as C(M) = J,cp AM(p). Given event
net £ = (N, \), let Tr(FE) be its set of traces (the set of traces of the underlying
N). Given trace 7 of an event net, we use Configs(t) to denote {C(M) : M €
markings(7)}, i.e., the set of global configurations reachable along that trace.
Given event net E and trace 7 in Tr(E), we define Traces(E, ), the packet
traces allowed by 7 and E, i.e., Traces(E,7) = {h : 3C € Configs(1). (h € C)}.
Note that labeling A is not used here—we could define a more precise semantics
by specifying consistency guarantees on how information about event occurrences
propagates (as in [25]), but we instead choose an overapproximate semantics, to
be independent of the precise definition of events and consistency guarantees.

Distributed Implementations of Event Nets. In general, an implementation of a
network program specifies the initial network configuration, and dictates how
the configuration changes (e.g., in response to events). We abstract away the
details, defining the semantics of an implemented network program Pr as the set
W (Pr) of program traces, each of which is a set of packet traces. A program trace
models a full execution, captured as the packet traces exhibited by the network
as the program runs. We do not model packet trace interleavings, as this is not
needed for the correctness notion we define. We say that Pr implements event
net F if Vir € W(Pr).3r € Tr(E). (tr C Traces(E,7)). Intuitively, this means
that each program trace can be explained by a trace of the event net E.

We now sketch a distributed implementation of event nets, i.e., one in which
decisions and state changes are made locally at switches (and not, e.g., at a cen-
tralized controller). In order to produce a (distributed) implementation of event
net F, we need to solve two issues (both related to the definition of Traces(E, 7)).

First, we must ensure that each packet is processed by a single configuration
(and not a mixture of several). This is solved by edge switches—those where
packets enter the network from a host. An edge switch fixes the configuration in
which a packet pkt will be processed, and attaches a corresponding tag to pkt.
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Second, we must ensure that for each program trace, there exists a trace of £
that explains it. The difficulty here stems from the possibility of distributed con-
flicts when the global state changes due to events. For example, in an application
where two different switches listen for the same event, and only the first switch to
detect the event should update the state, we can encounter a conflict where both
switches think they are first, and both attempt to update the state. One way to
resolve this is by using expensive coordination to reach agreement on which was
“first.” Another way is to use the following constraint. We define local event net
to be an event net in which for any two events e; = (¢1, h) and ex = (¢9, k), we
have (*e; N®ez # 0) = (l1=Uk), i.e., events sharing a common input place must
be handled at the same location (local labeled net can be defined similarly). A
local event net can be implemented without expensive coordination [25].

Theorem 1 (Implementability). Given a local event net E, there exists a
(distributed) implemented network program that implements E.

The theorem implies that there are no packet races in the implementation,
since it guarantees that each packet is never processed in a mix of configurations.

Packet-Trace Specifications. Beyond simply freedom from packet races, we wish
to rule out controller races, i.e., unwanted interleavings of concurrent events in an
event net. In particular, we use LTL to specify formulas that should be satisfied
by each packet-trace possible in each global configuration. We use LTL because
it is a very natural language for constructing formulas that describe traces. For
example, if we want to describe traces for which some condition ¢ eventually
holds, we can construct the LTL formula F ¢, and if we want to describe traces
where ¢ holds at each step (globally), we can construct the LTL formula G ¢.

Our LTL formulas are over a single packet pkt, which has a special field
pkt.loc denoting its current location. For example, the property (pkt.loc=Hy A
pkt.dst=Hy = F pkt.loc=H3) means that any packet located at Host 1
destined for Host 2 should eventually reach Host 2. Given a trace 7 of an event
net, we use 7 |= ¢ to mean that ¢ holds in each configuration C' € Configs(7).

For efficiency, we forbid the next operator. We have found this restricted
form of LTL (usually referred to as stutter-invariant LTL) to be sufficient for
expressing many properties about network configurations.

Processes and Synchronization Skeletons. The input to our algorithm is a set of
disjoint local event nets, which we call processes—we can use simple pointwise-
union of the tuples (denoted as |_|) to represent this as a single local event net £ =
| I{E1, Ea, -+, En}. Given an event net E = ((P, T, F, My), \), a synchronization
skeleton S for E is a tuple (P', T', F', M{), where PN P =0, TN T = 0,
FNF =0, and MyN M§ =0, and where (PUP', TUT',FUF', My U M), A
is a labeled net, which we denote | |{E, S}.

Deadlock Freedom and 1-Safety. We want to avoid adding synchronization which
fully deadlocks any process F;. Let L = | |{E, S} be a labeled net where E =
| {E1, Es, -, E,}, and let P;, T; be the places and transitions of each E;. We
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Fig.2: Synchronization skeletons: (1) Barrier, (2) Condition Variable, (3) Mutex.

say that L is deadlock-free if and only if there exists a trace 7 € L such that V0 <
i <n,M; € markings(7),t € T;. ((*t N P;) C M;) = (IMy, € markings(7). (k >
JA(t* N P;) C My))), i.e. a trace of L where transitions ¢ of each F; fire as if
they experienced no interference from the rest of L. We encode this as an LTL
formula, obtaining a progress constraint @preq- for E. Similarly, we want to avoid
adding synchronization which produces a labeled net that is not 1-safe. We can
also encode this as an LTL constraint ¢ysqfe-

Synchromzatwn Synthesis Problem. Given ¢ and local event net E = | |[{E1, E»,

-+, E,}, find a local labeled net L = | |[{E, S} which correctly synchronizes E:

1. VT € Tr(L).((r> E) € Tr(E)), i.e., each 7 of L (modulo added events) is a
trace of E, and

2. Vre Tr(L ) (1 = ), i.e., all reachable configurations satisfy ¢, and

VT e Tr(Ll). (7 = <p1§afe) i.e., Lis 1-safe (L is an event net), and

4. 31 € Tr(L). (T = @progr), i-€., L deadlock-free.

w

4 Fixing and Checking Synchronization in Event Nets

Our approach is an instance of the CEGIS algorithm in [17], set up to solve prob-
lems of the form 3L. (V7 € L. (¢(7, E, ¢, Y1safe))) A (VT € L. (T & @progr)))s
where F, L are input/output event nets, and ¢ captures 1-3 of the above specifica-
tion. Our event net repair engine (§4.1) performs synthesis (producing candidates
for 3), and our event net verifier (§4.2) performs verification (checking V). Algo-
rithm 1 shows the pseudocode of our synthesizer. The function makeProperties
produces the @14 fe; Pprogr formulas discussed in §3. The following sections de-
scribe the other components of the algorithm.

4.1 Repairing Event Nets Using Counterexample Traces

We use SMT to find synchronization constructs to fix a finite set of bugs (given as
unwanted event-net traces). Figure 2 shows synchronization skeletons which our
repair engine adds between processes of the input event net. The barrier prevents
events b, d from firing until both a, c have fired, condition variable requires a to
fire before ¢ can fire, and mutex ensures that events between a and b (inclusive)
cannot interleave with the events between ¢ and d (inclusive). Our algorithm
explores different combinations of these skeletons, up to a given set of bounds.
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Algorithm 1: Synchronization Synthesis Algorithm

Input: local event net E = | |{E1, Es,--- , E,}, LTL property ¢, upper bound Y
on the number of added places, upper bound X on the number of added
transitions, upper bound I on the number of synchronization skeletons

Result: local labeled net L which correctly synchronizes F

1 imtRepairEngine(El, FEs, -  E,, XY, I) // initialize repair engine (§4.1)
2 L E; (p1safe, Pprogr) < makeProperties(Eq, Ea, -+ , Ey)

3 while true do

4 ok < true; props < {@, P1safe, Pprogr

5 for ¢’ € props do

6 Tctexw ve?“ify(L 90/) // check the property (§4.2)
7 if (Tctezt = (Z) N @/ = (pprogr) Y (Tctex 7é Q) A SO/ = Qolsafe) then

8 L differentRepair(); ok + false // try different repair (§4.1)
9 else if Teres Z DA @ # Qprogr then

10 L assertCtex(Tetes); 0k false // record counterexample (§4.1)
11 if ok then

12 L return L // return correctly-synchronized event net
13 L+ repair(L) // generate new candidate
14 if L =1 then

15 L return fazl // cannot repair

Repair Engine Initialization. Algorithm 1 calls initRepairEngine, which initial-
izes the function symbols shown in Figure 3 and asserts well-formedness con-
straints. Labels in bold/blue are function symbol names, and cells are the corre-
sponding values. For example, Petri is a 2-ary function symbol, and Loc is a 1-ary
function symbol. Note that there is a separate Ctex, Acc, Trans for each k (where
k is a counterexample index, as will be described shortly). The return type (i.e.,
the type of each cell) is indicated in parentheses after the name of each function
symbol. For example, letting B denote the Boolean type {true, false}, the types of
the function symbols are: Petri : NxN — BxB, Mark : N - N, Loc : N — NxN;,
Type : N — N, Pair : NXxN —- NxNxN, Range : N - Nx N x N x N,
Ctexp : Nx N = N, Accy, : N = B, Transy : N = N, Len : N = N (note that
Len is not shown in the figure).

The regions highlighted in Figure 3 are “set” (asserted equal) to values match-
ing the input event net. In particular, Petri(y, x) is of the form (b1, ba), where we
set by if and only if there is an edge from place y to transition z in E, and sim-
ilarly set by if and only if there is an edge from transition = to place y. Mark(y)
is set to 1 if and only if place y is marked in E. Loc(x) is set to the location
(switch/port pair) of the event at transition z. The bound Y limits how many
places can be added, and X limits how many transitions can be added.

Bound I limits how many skeletons can be used simultaneously. Each “row” 4
of the Type, Pair, Range symbols represents a single added skeleton. More specif-
ically, Type(i) identifies one of the three types of skeletons. Up to J processes
can participate in each skeleton (Figure 2 shows the skeletons for 2 processes,
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Fig. 3: SMT function symbols.

but they generalize to j > 2), and by default, J is set to the number of processes.
Thus, Pair(i, j) is a tuple (id, fst, snd), where id identifies a process, and fst, snd
is a pair of events in that process. Range(i) is a tuple (pMin, pMaz, tMin, tMaz),
where pMin, pMax reserve a range of rows in the added places section of Figure
3, and similarly, tMin, tMax reserve a range of columns in the added transitions.

We assert a conjunction ¢gopar of well-formedness constraints to ensure that
proper values are used to fill in the empty (un-highlighted) cells of Figure 3.
The primary constraint forces the Petri cells to be populated as dictated by any
synchronization skeletons appearing in the Type, Pair, Range rows. For example,
given a row i where Type(i) = 1 (barrier synchronization skeleton), we would
require that Range(i) = (y1, y2, 1, 22), where (ya—y1)+1 =4 and (zo—x1)+1 =
1, meaning 4 new places and 1 new transition would be reserved. Additionally,
the values of Petri for rows y; through ys and columns x; through s would be
set to match the edges for the barrier construct in Figure 2.

Asserting Counterezample Traces. Once the repair engine has been initialized,
Algorithm 1 can add counterexample traces by calling assertCtez(Teter). To add
the k-th counterexample trace 7, = tot1---t,—1, we assert the conjunction ¢y
of the following constraints. In essence, these constraints make the columns of
Ctexy, correspond to the sequence of markings of the current event net in Petri
if it were to fire the sequence of transitions 7. Let Ctexy(*,z) denote the z-th
“column” of Ctexy. We define Ctex) inductively as Ctexy(*,1) = Mark and for
x > 1, Ctexy(*,x) is equal to the marking that would be obtained if ¢,_o were
to fire in Ctexy(*,x—1). The symbol Accy, is similarly defined as Accy (1) = true
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and for x > 1, Accp(x) < (Accp(x—1)A(tz—2 is enabled in Ctexy(x,z—1))).
We also assert a constraint requiring that Accy must become false at some point.
An important adjustment must be made to handle general counterexamples.
Specifically, if a trace of the event net in Petri is equal to 7, modulo transitions
added by the synchronization skeletons, that trace should be rejected just as 7%
would be. We do this by instead considering the trace 7, = € tg € t1 -+ € tp_1
(where € is a placeholder transition used only for notational convenience), and for
the e transitions, we set Ctexy(*,x) as if we fired any enabled added transitions
in Ctexy(*,z — 1), and for the ¢ transitions, we update Ctexy(x,x) as described
previously. More specifically, the adjusted constraints ¢ are as follows:
1. Ctexy(x,1) = Mark.
2. Len(k)=n A Acci(1) N —Accg(2- Len(k) + 1).
3. For ¢ > 2, Accp(x) <= (Accr(x — 1) A (Transg(z)=e V (Transi(x)
is enabled in Ctexy(x,x —1)))).
4. For odd indices > 3, Transy(z) = t(;_3)/2, and Ctexp(x,x) is set as if
Transy(x) fired in Ctexy(x, 2 — 1).
5. For even indices x > 2, Transi(x) = €, and Ctexy(*,x) is set as if all enabled
added transitions fired in Ctexy(x,z — 1).
The last constraint works because for our synchronization skeletons, any added
transitions that occur immediately after each other in a trace can also occur in
parallel. The negated acceptance constraint —Accy(2- Len(k) + 1) makes sure
that any synchronization generated by the SMT solver will not allow the coun-
terexample trace 7; to be accepted.

Trying a Different Repair. The differentRepair() function in Algorithm 1 makes
sure the repair engine does not propose the current candidate again. When this
is called, we prevent the current set of synchronization skeletons from appearing
again by taking the conjunction of the Type and Pair values, as well as the
values of Mark corresponding to the places reserved in Range, and asserting the
negation. We denote the current set of all such assertions @spip.

Obtaining an FEvent Net. When the synthesizer calls repair(L), we query the
SMT solver for satisfiability of the current constraints. If satisfiable, values of
Petri, Mark in the model can be used to add synchronization skeletons to L.
We can use optimizing functionality of the SMT solver (or a simple loop which
asserts progressively smaller bounds for an objective function) to produce a
minimal number of synchronization skeletons.

Note that formulas ¢giobais Pskip, @1, - - have polynomial size in terms of the
input event net size and bounds Y, X, I, J, and are expressed in the decidable
fragment QF _UFLIA (quantifier-free uninterpreted function symbols and linear
integer arithmetic). We found this to scale well with modern SMT solvers (§5).

Lemma 1 (Correctness of the Repair Engine). If the SMT solver finds that
® = Dgiobal N\ Pskip NP1 A -+ AP, is satisfiable, then the event net represented by
the model does not contain any of the seen counterexample traces Ty, -+ ,Tp. If
the SMT solver finds that ¢ is unsatisfiable, then all synchronization skeletons
within the bounds fail to prevent some counterexample trace.
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Algorithm 2: Event Net Verifier (PROMELA Model)

1 marked < initMarking() // initial marking from input event net
2 run singlePacket, transitions // start both processes
3 Process singlePacket:

4 lock(); status < 1; pkt < pickPacket(); n < pickHost()

5 do

6 ‘ pkt < movePacket(pkt,marked) // move according to current config.
7 while pkt.loc # drop N\ —isHost(pkt.loc)

8 status < 2; unlock()

9

Process transitions:

10 while true do

11 lock()

12 t < pickTransition(marked); marked < updateMarking(t, marked)
13 unlock()

4.2 Checking Event Nets

We now describe verify(L, ¢’) in Algorithm 1. From L, we produce a PROMELA
model for LTL model checking. Algorithm 2 shows the model pseudocode, which
is an efficient implementation of the semantics described in Section 3. Variable
marked is a list of boolean flags, indicating which places currently contain a to-
ken. The initMarking macro sets the initial values based on the initial marking of
L. The singlePacket process randomly selects a packet pkt and puts it at a ran-
dom host, and then moves pkt until it either reaches another host, or is dropped
(pkt.loc = drop). The movePacket macro modifies/moves pkt according to the
current marking’s configuration. The pickTransition macro randomly selects a
transition ¢ € L, and updateMarking updates the marking to reflect ¢ firing.
We ask the model checker for a counterexample trace demonstrating a vio-
lation of ¢’. This gives the sequence of transitions ¢ chosen by pickTransition.
We generalize this sequence by removing any transitions which are not in the
original input event nets. This sequence is returned as 7Toge, to Algorithm 1.

Lemma 2 (Correctness of the Verifier). If the verifier returns counterez-
ample 7, then L violates ¢ in one of the global configurations in Configs(r). If
the verifier does not return a counterexample, then all traces of L satisfy .

4.3 Overall Correctness Results
The proofs of the following theorems use Lemmas 1, 2, and Theorem 1.

Theorem 2 (Soundness of Algorithm 1). Given E, ¢, if an L is returned,
then it is a local labeled net which correctly synchronizes E with respect to ¢.

Theorem 3 (Completeness of Algorithm 1). If there exists a local labeled
net L = | {E, S}, where |S| < I, and synchronization skeletons in S are each
of the form shown in Figure 2, and S has fewer than X total transitions and
fewer than Y total places, and L correctly synchronizes E, then our algorithm
will return such an L. Otherwise, the algorithm returns “fail.”
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#number I time (sec.)

[
benchmark [switch[iter[ctex[skip[SMT||build[verify [synth[misc[total|

ex01-isolation 5 2| 2 0 | 318 |/ 0.48 | 0.43 | 0.04 |0.52] 1.47
ex02-conflict 3 10| 3 6 | 349 [/ 0.28 | 0.94 | 0.61 |1.14] 2.98
ex03-loop 4 2 1 0 | 257 [/ 0.48 | 0.43 | 0.01 [0.45] 1.37
ex04-composition 4 2 1 0 | 305 [ 0.48 | 0.74 | 0.03 {0.50| 1.75
ex05-exclusive 3 5| 3 3 | 583 || 5.17 | 4.48 | 0.10 |1.00[10.74

Fig. 4: Performance of Examples 1-5.

5 Implementation and Evaluation

We have implemented a prototype of our synthesizer. The repair engine (§4.1)
utilizes the Z3 SMT solver, and the verifier (§4.2) utilizes the SPIN LTL model
checker. In this section, we evaluate our system by addressing the following:

1. Can we use our approach to model a variety of real-world network programs?

2. Is our tool able to fix realistic concurrency-related bugs?

3. Is the performance of our tool reasonable when applied to real networks?
We address #1 and #2 via case studies based on real concurrency bugs described
in the networking literature, and #3 by trying increasingly-large topologies for
one of the studies. Figure 4 shows quantitative results for the case studies. The
first group of columns denote number of switches (switch), CEGIS iterations
(iter), SPIN counterexamples (ctez), event nets “skipped” due to a deadlock-
freedom or 1-safety violation (skip), and formulas asserted to the SMT solver
(smt). The remaining columns report runtime of the SPIN verifier generation/-
compilation (build), SPIN verification (verify), repair engine (synth), various
auxiliary /initialization functionality (misc), and overall execution (total). Our
experimental platform had 20GB RAM and a 3.2 GHz 4-core Intel i5-4570 CPU.

Ezxzample #1—Tenant Isolation in a Datacenter. We used our tool on the exam-
ple described in Section 2. We formalize the isolation property using the following
LTL properties: ¢1 = G(loc=H1 = G(loc#H4)) and ¢3 = G(loc=H3 —
G(loc£H?2)). Our tool finds the barrier in Figure 1d, which properly synchro-
nizes the event net to avoid isolation violations, as described in Section 2.

Ezample #2—Conflicting Controller Modules. In a real bug (El-Hassany et al.
[16]) encountered using the POX SDN controller, two concurrent controller mod-
ules Discovery and Forwarding made conflicting assumptions about which for-
warding rules should be deleted, resulting in packet loss. Figure 5a shows a sim-
plified version of such a scenario, where the left side (1, A, 2, B) corresponds to
the Discovery module, and the right side (4, C, 3, D) corresponds to the Forward-
ing module. In this example, Discovery is responsible for ensuring that packets
can be forwarded to H1 (i.e., that the configuration labeled with 2 is active),
and Forwarding is responsible for choosing a path for traffic from H3 (either the
path labeled 3 or 4). In all cases, we require that traffic from H3 is not dropped.

We formalize this requirement using the LTL property ¢3 = G(loc=H3
= G(loc#drop)). Our tool finds the two condition variables which properly
synchronize the event net. As shown in Figure 5a, this requires the path corre-
sponding to place 2 to be brought up before the path corresponding to place 3
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Fig. 5: Experiments—Event Nets and Configurations.

(i.e., event C' can only occur after A), and only allows it to be taken down after
the path 3 is moved back to path 4 (i.e., event B can only occur after D).

Ezample #8—Discovery Forwarding Loop. In a real bug scenario (Scott et al.
[32]), the NOX SDN controller’s discovery functionality attempted to learn the
network topology, but an unexpected interleaving of packets caused a small for-
warding loop to be created. We show how such a forwarding loop can arise due
to an unexpected interleaving of controller modules. In Figure 5b, the Forward-
ing/ Discovery modules are the left /right sides respectively. Initially, Forwarding
knows about the red (1) path in Figure 5f, but will delete these rules, and later
set up the orange (3) path. On the other hand, Discovery first learns that the
green (4) path is going down, and then later learns about the violet (6) path.
Since these modules both modify the same forwarding rules, they can create a
forwarding loop when configurations 1,6 or 4,3 are active simultaneously.

We wish to disallow such loops, formalizing this using the following property:
¢4 = G(status=1 = F(status=2)). As discussed in Section 4.2, status is set
to 1 when the packet is injected into the network, and set to 2 when/if the packet
subsequently exits or is dropped. Our tool enforces this by inserting a barrier
(Figure 5b), preventing the unwanted combinations of configurations.
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Ezample #4—Policy Composition. In an update scenario (Canini et al. [9]) in-
volving overlapping policies, one policy enforces HT'TP traffic monitoring and
the other requires traffic from a particular hosts(s) to waypoint through a device
(e.g., an intrusion detection system or firewall). Problems arise for traffic pro-
cessed by the intersection of these policies (e.g., HTTP packets from a particular
host), causing a policy violation.

Figure 5g shows such a scenario. The left process of 5c is traffic monitoring,
and the right is waypoint enforcement. HTTP traffic is initially enabled along
the red (1) path. Traffic monitoring intercepts this traffic and diverts it to H2
by setting up the orange (2) path and subsequently bringing it down to form the
blue path (3). Waypoint enforcement initially sets up the green path (5) through
the waypoint S3, and finally allows traffic to enter by setting up the violet (6)
path from H1. For HTTP traffic from H1 destined for H3, if traffic monitoring
is not set up before waypoint enforcement enables the path from H1, this traffic
can circumvent the waypoint (on the S2 — S4 path), violating the policy.

We can encode this specification using the following LTL properties: ¢g
G ((pkt.type=HTTP A pkt.loc=H5) = F(pkt.loc=H2 V pkt.loc=H3)) and ¢
(=(pkt.src=H1 A pkt.dst=H3 A pkt.loc=H3) W (pkt.src=H1 A pkt.dst=H3 A
pkt.loc=S53)), where W is weak until. Our tool finds Figure 5c, which forces
traffic monitoring to divert traffic before waypoint enforcement proceeds.

(> |l>

Ezample #5—Topology Changes during Update. Peresini et al. [29] describe a
scenario in which a controller attempts to set up forwarding rules, and concur-
rently the topology changes, resulting in a forwarding loop being installed.

Figure 5h, examines a similar situation where the processes in Figure 5d
interleave improperly, resulting in a forwarding loop. The left process updates
from the red (2) to the orange (3) path, and the right process extends the green
(5) to the violet (6) path (potential forwarding loops: S1,.53 and S1, 52, 53).

We use the loop-freedom property ¢4 from Example #3. Our tool finds a mu-
tez synchronization skeleton (Figure 5d). Note that both places 2, 3 are protected
by the mutex, since either would interact with place 6 to form a loop.

Scalability Experiments. Recall Example #1 (Figure la). Instead of the short
paths between the pairs of hosts H1, H2 and H3, H4, we gathered a large set
of real network topologies, and randomly selected long host-to-host paths with
a single-switch intersection, corresponding to Example #1. We used datacenter
FatTree topologies (e.g., Figure 7a), scaling up the depth (number of layers)
and fanout (number of links per switch) to achieve a maximum size of 1088
switches, which would support a datacenter with 4096 hosts. We also used highly-
connected (“small-world”) graphs, such as the one shown in Figure 7b, and we
scaled up the number of switches (ring size in the Watts-Strogatz model) to
1000. Additionally, we used 240 wide-area network topologies from the Topology
Zoo dataset—as an example, Figure 7c shows the NSENET topology, featuring
physical nodes across the United States. The results of these experiments are
shown in Figure 6, 8a, and 8b.
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Fig. 8: Performance results: scalability of Example #1 (continued).

6 Related Work

Synthesis for Network Programs. Yuan et al. [36] present NetEgg, pioneering
the approach of using examples to write network programs. In contrast, we
focus on distributed programs and use specifications instead of examples. Ad-
ditionally, different from our SMT-based strategy, NetEgg uses a backtracking
search which may limit scalability. Padon et al. [28] “decentralize” a network
program to work properly on distributed switches. Our work on the other hand
takes a buggy decentralized program and inserts the necessary synchronization
to make it correct. Saha et al. [31] and Hojjat et al. [18] present approaches for
repairing a buggy network configuration using SMT and a Horn-clause-based
synthesis algorithm respectively. Instead of repairing a static configuration, our
event net repair engine repairs a network program. A network update is a simple
network program—a situation where the global forwarding state of the network
must change once. Many approaches solve the problem with respect to different
consistency properties [23, 37]. In contrast, we provide a new model (event nets)
for succinctly describing how multiple updates can be composed, as well as an
approach for synthesizing synchronization for this composition.
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Concurrent Programming for Networks. Some well-known network program-
ming languages (e.g., NetKAT [1]) only allow defining static configurations, and
they do not support stateful programs and concurrency constructs. Many lan-
guages [27, 20], provide support for stateful network programming (often with
finite-state control), but lack direct support for synchronization. There are two
recently-proposed exceptions: SNAP [2], which provides atomic blocks, and the
approach by Canini et al. [9], which provides transactions. Both of these mech-
anisms are difficult to implement without damage to performance. In contrast,
our solution is based on locality and synchronization synthesis, and is more fine-
grained and efficiently implementable than previous approaches. It builds on
and extends network event structures (NES) [25], which addresses the prob-
lem of rigorously defining correct event-driven behavior. From the systems side,
basic support for stateful concurrent programming is provided by switch-level
mechanisms [8, 6], but global coordination still must be handled carefully at the
language/compiler level.

Petri Net Synthesis. Ehrenfeucht et al. [15] introduce the “net synthesis” prob-
lem, i.e., producing a net whose state graph is isomorphic to a given DFA, and
present the “regions” construction on which Petri net synthesis algorithms are
based. Many researchers continued this theoretical line of work [12, 11, 3, 19]
and developed foundational (complexity-theoretic) results. Synthesis from exam-
ples for Petri nets was also considered [5], and examined in the slightly different
setting of process mining [14, 30]. Neither of these approaches is directly appli-
cable to our problem of program repair by inserting synchronization to eliminate
bugs. More closely related is process enhancement for Petri nets [24, 4] but these
works either modify the semantics of systems in arbitrary ways, whereas we only
restrict behaviors by adding synchronization, or they rely on other abstractions
(such as timed Petri nets) which are unsuitable for network programming.

Synthesis/Repair for Synchronization. There are many approaches for fixing
concurrency bugs which use constraint (SAT/SMT) solving. Application areas
include weak memory models [26, 22|, and repair of concurrency bugs [10, 34,
7, 33]. The key difference is that while these works focus on shared-memory
programs, we focus on message-passing Petri-net based programs. Our model is
a general framework for synthesis of synchronization where many different types
of synchronization constructs can be readily described and synthesized.

7 Conclusion

We have presented an approach for synthesis of synchronization to produce net-
work programs which satisfy correctness properties. We allow the programmer
to specify a network program as a set of concurrent behaviors, in addition to
high-level temporal correctness properties, and our tool inserts synchronization
constructs needed to remove unwanted interleavings. The advantages over previ-
ous work are that we provide (a) a language which leverages Petri nets’ natural
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support for concurrency, and (b) an efficient counterexample-guided algorithm
for synthesizing synchronization for programs in this language.
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