Network Updates for the Impatient:
Eliminating Unnecessary Waits

Hossein Hojjat Jedidiah McClurg

Cornell University CU Boulder

Introduction. Identifying the correct sequence of management
operations to apply during a network update is a challenging task
that can easily go wrong when performed manually [2]. Ad hoc
update strategies can lead to a host of anomalies including dropped
connections, forwarding loops, access control violations, and more.
In recent work, Reitblatt et al. proposed the notion of a consistent
network update [5], which guarantees that packets are processed
by a single policy all the way through the network. Unfortunately,
consistent updates can require doubling the amount of memory on
switches in general—something that is not practical in large net-
works since switches rely on expensive and power-hungry ternary
content-addressable memories. A different approach, recently pro-
posed by McClurg et al. is to use program synthesis to generate
updates that preserve invariants specified by the programmer [4].
The idea is to explore the space of possible orderings of updates to
individual switches, searching for a sequence that reaches the tar-
get configuration while ensuring that the invariants are not violated
even for the intermediate configurations. After some (though not
all) updates to individual switches, the synthesized program needs
to wait for all in-flight packets to exit the network (see the exam-
ple below). For simplicity and efficiency of synthesis, the algorithm
in [4] waits after each individual switch update. A heuristic is then
used to eliminate spurious waits (e.g. between switches in disjoint
parts of a network) but there is no guarantee that the number of
waits in the synthesized update will be optimal.

Contributions. This paper develops a novel relationship between
networks and concurrent programs, and leverages this connection
to reduce the problem of minimizing the number of waits required
for a network update to the problem of inserting the minimal num-
ber of fences in a program running on a weak memory model [1].
We focus on the PSO (Partial Store Ordering) weak memory model,
which allows store operations to disjoint locations to be reordered
with respect to earlier store operations performed by the same
thread. PSO is attractive because its safety verification problem
is decidable and there exist tools for finding minimal fences [3].
We present a faithful translation from networks to programs and
exploit algorithms for synthesizing minimal fences to identify the
necessary waits. We have implemented a simple prototype that uses
Linden and Wolper’s tool [3] on simple benchmarks and confirmed
that it finds the minimal number of waits for a number of simple
updates provided as inputs.

Example. Figure 1 depicts a simple network before and after an
update. In this network the ingress switch s; filters SSH traffic
going to s2 and forwards all traffic to s3. To better balance the
traffic the network administrator wants to configure the configu-
ration of the network by performing three updates: upd; (enable
link s1-LAN3), updsz (disable link s3-LAN; and enable link so-
LAN3), and upds (disable link s3-s2). However, throughout the
update, we wish to ensure that at all times the network prevents

Network Updates for the Impatient: Eliminating Unnecessary Waits

Pavol Cerny Nate Foster

CU Boulder Cornell University

SSH traffic from being sent to LAN2. A possible update sequence
is upds;updz;upd;. In order to preserve the required property, we
need to wait after upds. The reason is that if we perform upds right
away, there might be some in-flight packets that were processed by
s3 before upds, and by sz after upds. These might be SSH packets
that enter LANs.

From Networks to Concurrent Programs. To analyze updates
using standard tools, we define a translation that maps a network
and an update to a concurrent program with three threads: Dat-
aPlane, ControlPlane and Assert. Together, these threads model
the behavior of an individual packet traversing the network dur-
ing the update. We assume that switches and hosts have unique
integer identifiers (e.g., 1, 2, 3, etc.) as shown in Figure 1. The pro-
gram maintains global variables us,, and hs, for each switch sw,
as well as a collection of variables wz in which Z is a subset of
the switches. The wug,, variable tracks whether switch sw has been
updated: it is set to O initially, and is updated to 1 when the Con-
trolPlane decides to update sw. The h, variable tracks whether
the packet passes through in its initial configuration, final config-
uration, or not at all: it is set to O initially, and is set to 1 if the
packet is processed by sw in the initial configuration and 2 if it
is processed by sw in the final configuration. We assume that the
network is loop-free, so packets are processed by each switch at
most once. The wait variables wz keep track of a set of switches Z
that have been updated. The DataPlane thread uses wait variables to
rule out certain “impossible” executions: if wz is set to 1, then the
packet should have only seen the final configurations of the updated
switches (as tracked by the hs,, variables). The program prevents
the packet from seeing the initial configurations of those switches
by assuming that the value of the corresponding h, variables is
not 1. The rest of the DataPlane thread uses a set of atomic condi-
tional statements to model a single hop of processing on a switch.
The Assert thread simply encodes the desired network invariant ¢.

Weak Memory Models. For static networks, where the initial and
final configurations are identical, it is straightforward to show that
the network and the translated program produce the same set of
traces under any memory model:

THEOREM 1 (Static Trace Equivalence). Let N be a network with
an empty sequence of update commands and let the program 11 be
the corresponding static network program. For both sequentially
consistent and PSO memory models, N ~ 1I.

However, in the presence of non-trivial updates, the situation is
different. We can prove a similar simulation result for dynamic
networks for a sequentially consistent memory:

THEOREM 2 (SC Trace Equivalence). Let N be a network with a
sequence of update commands and a number of waits at different
steps and let 11 be the corresponding network program. If we
execute 11 on a sequentially consistent memory model, N ~ 11

2015/2/18

(loc 4)
~<~upda

N
N

(loc 5)

(loc 6)

u; = 0,u2 =0,uz3 =0
h1=0,ha =0,hg =0
wyzy =0,w2,33 =0,

loc=1

0 < type < 1

Process DATAPLANE
1: loop
2: if (loc = 2) then
3: atomic
4: if (w3} = 1) then assume (h3 # 1)
5: if (w2 3) = 1) then assume (ho # 1 A hg # 1)
6: if (uz = 0) then (loc <— 4) ; ho <1
7: if (ug = 1) then (loc < 5) ; hg «+ 2
8: else
9: /* Similar to case for loc = 2 */

Process CONTROLPLANE
10: atomic (uz < 1; w(g) 1);
11: atomic (ug < 1; wiz 3} < 1);
12: up + 1

Process ASSERT
13: assert—((loc = 5) A (type = 0))

Figure 1. Example update and translated program.

Unfortunately, the analogous theorem does not hold under the PSO
weak memory model, since the assignments generated by the con-
trol plane may be committed to memory in any order. Among other
issues, PSO may potentially reorder the assignments to update vari-
ables and postpone assignments to wait variables. In extreme cases,
all the assignments to the wait variables may be postponed until the
end of the execution of the control plane process—i.e., after all the
switches have been updated.

Fence Synthesis and Minimal Waits. To prevent the undesired
behavior of swapping the assignments, PSO memory models typi-
cally provide a fence instruction that enforces a boundary between
assignments occurring before and after the fence. A conservative
way to restore the sequentially-consistent execution is to insert a
fence between every assignment, although this leads to less effi-
cient code. Fortunately, there exist fence synthesis tools which at-
tempt to insert only those fences needed to ensure the required cor-
rectness property. When applied to the program corresponding to
a network, such a tool inserts fences after assignments to the waits
needed to ensure the property encoded in the Assert thread. The
following theorem captures this relationship formally:

THEOREM 3 (PSO Trace Equivalence). Let N be a network with
a sequence of update commands and a number of waits at different
steps and let 11 be the corresponding fenced network program. If
we execute 11 on a PSO weak memory model, N ~ I1.

As an example, given the program shown in Figure 1, a fence
synthesis tool would place a single wait after the line 10. This fence
conveys that the updates after the fence (1 and 2) can be done in
parallel, but we must wait after updating 3 before continuing to
update the remaining switches. This fence corresponds to the actual
waits that would be needed in the network.

Summary. The following diagram depicts the overall algorithm
for removing waits using a fence synthesis tool:

Network (Waits after) « 5 Program (SC)
all updates ()

¢ | Fence insertion tool

Network’ (Sufficient) & (Fenced Program) (PSO)
waits

Network Updates for the Impatient: Eliminating Unnecessary Waits

First, we use an update synthesis tool to generate a correct update
sequence with a wait between each individual switch update. Next,
we translate the network to an equivalent concurrent program. Fi-
nally, we use a fence synthesis tool to identify the fences needed to
ensure correctness and read off the corresponding waits. The three
theorems stated above capture the correctness of our method in
terms of trace equivalence (~~) between networks and correspond-
ing concurrent programs.

Future Work. This paper introduces a novel formal connection
between the problem of updating the configuration of a running
network and minimal fence insertion in weak memory models. In
the future, we plan to incorporate these results into a practical tool
for synthesizing network updates with minimal waits. We also plan
to develop deeper connections between programming abstractions
for concurrent architectures and software-defined networks.

Acknowledgments. The authors wish to thank Fred Schneider
and Keith Marzullo for suggesting we explore the connection be-
tween concurrent programming and software-defined networks.
Our work is supported by the National Science Foundation un-
der grants CNS-1111698, CNS-1413972, and SHF-1422046, SHF-
1421752 and a gift from Fujitsu Labs.

References

[1] M. F. Atig, A. Bouajjani, S. Burckhardt, and M. Musuvathi. On the
Verification Problem for Weak Memory Models. In POPL, pages 7-18,
2010.

[2] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Hoélzle, S. Stu-
art, and A. Vahdat. B4: Experience with a Globally-deployed Software
Defined WAN. SIGCOMM Comput. Commun. Rev., 43(4):3-14, Aug.
2013.

[3] A. Linden and P. Wolper. A Verification-Based Approach to Memory
Fence Insertion in PSO Memory Systems. In TACAS, pages 339-353,
2013.

[4] J. McClurg, H. Hojjat, N. Foster, and P. Cerny. Efficient Synthesis of
Network Updates. CoRR, 2014.

[S] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and D. Walker.
Abstractions for Network Update. In SIGCOMM, pages 323-334.
ACM, 2012.

2015/2/18

