
77

Synchronization Synthesis for Network Programs

JEDIDIAH MCCLURG, University of Colorado Boulder, USA

HOSSEIN HOJJAT, Rochester Institute of Technology, USA

PAVOL ČERNÝ, University of Colorado Boulder, USA

In so�ware-de�ned networking (SDN), a controller program updates the forwarding rules installed on network packet-

processing devices in response to events. Such programs are o�en physically distributed, running on several nodes of the

network, and this distributed se�ing makes programming and debugging especially di�cult. Furthermore, bugs in these

programs can lead to serious problems such as packet loss and security violations. In this paper, we propose a program

synthesis approach that makes it easier to write distributed controller programs. �e programmer can specify each sequential

process, and add a declarative speci�cation of paths that packets are allowed to take. �e synthesizer then inserts enough

synchronization among the distributed controller processes such that the declarative speci�cation will be satis�ed by all

packets traversing the network. Our key technical contribution is a counterexample-guided synthesis algorithm that furnishes

network controller processes with the synchronization constructs required to prevent any races causing speci�cation violations.

Our programming model is based on Petri nets, and generalizes several models from the networking literature. Importantly,

our programs can be implemented in a way that prevents races between updates to individual switches and in-�ight packets.

To our knowledge, this is the �rst counterexample-guided technique that automatically adds synchronization constructs to

Petri-net-based programs. We demonstrate that our prototype implementation can �x realistic concurrency bugs described

previously in the literature, and that our tool can readily scale to real network topologies with 1000+ nodes.

1 INTRODUCTION
So�ware-de�ned networking (SDN) enables programmers or network operators to more easily implement impor-

tant applications such as tra�c engineering, distributed �rewalls, network virtualization, etc. �ese applications

are typically event-driven, in the sense that the packet-processing behavior can change in response to network

events such as topology changes, shi�s in tra�c load, or arrival of packets at various network nodes. SDN enables

this type of event-driven behavior via a controller machine that manages the network con�guration, i.e., the set of

forwarding rules installed on the various network switches. �e application programmer can write code which

runs on the controller, as well as instruct the switches to install custom forwarding rules, which inspect incoming

packets and either move them to other switches, or send them to the controller for custom processing.

Concurrency in Network Programs. Although SDN provides the abstraction of a centralized controller machine,

in reality, network control is o�en physically distributed, with controller processes running on multiple network

nodes (Dixit et al. 2014; Koponen et al. 2010). �e fact that these distributed programs control a network which is

itself a distributed packet-forwarding system means that event-driven network applications can be especially

di�cult to write and debug. In particular, there are two types of races that can occur, resulting in incorrect

behavior. First, there are races between updates of forwarding rules at individual switches, or between packets

that are in-�ight during updates. Second, there are races among the di�erent processes of the distributed controller.

We call races of the �rst type packet races, and races of the second type controller races. Bugs resulting from either

of these types of races can lead to serious problems such as packet loss and security violations.

Illustrative Example. Let us examine the di�culties of writing distributed controller programs, in regards to the

two types of races. Consider the network topology in Figure 1(a). In the initial con�guration, packets entering

2017. 2475-1421/2017/7-ART77 $?

DOI: ?

CAV, Vol. ?, No. ?, Article 77. Publication date: July 2017.

77:2 • Jedidiah McClurg, Hossein Hojjat, and Pavol Černý

at H1 are forwarded through S1, S5, S2 to H2. �ere are two controllers (not shown), C1 and C2—controller C1

manages the upper part of the network (H1, S1, S5, S3,H3), and C2 manages the lower part (H2, S2, S5, S4,H4).

Now imagine that the network operator wants to take down the forwarding rules that send packets from H1

to H2, and instead install rules to forward packets from H3 to H4. Furthermore, the operator wants to be sure

that the following property ϕ holds at all times: all packets entering the network from H1 must exit at H2. When

developing the program to do this, the network operator must keep the following problems in mind:

• Packet race: If C1 removes the rule that forwards from S1 to S5 before removing the rule that forwards

from H1 to S5, then a packet entering at H1 will be dropped at S1, violating speci�cation ϕ.

• Controller race: Suppose C1 makes no changes to the initial forwarding rules, and suppose C2 adds rules

that forward from S5 to S4, and from S4 to H4. In the resulting con�guration, a packet entering at H1

can be forwarded to H4, again violating speci�cation ϕ.

Our Approach. We present a program synthesis approach that makes it easier to write distributed controller

programs. �e programmer can specify each sequential process (e.g., C1 and C2 in the previous example), and

add a declarative speci�cation of paths that packets are allowed to take (e.g., ϕ in the previous example). �e

synthesizer then inserts synchronization constructs that constrain the interactions among the controller processes

to ensure that the declarative speci�cation is always satis�ed by any packets traversing the network. In e�ect, our

approach allows the programmer to reduce the amount of e�ort spent on keeping track of possible interleavings of

controller processes and inserting low-level synchronization constructs, and instead focus on writing a declarative

speci�cation which describes allowed packet paths. In the examples we have considered, we �nd these declarative

speci�cations to be a clear and easy way to write the desired correctness properties.

Network Programming Model. In our approach, similar to network programming languages like OpenState

(Bianchi et al. 2014), and Kinetic (Kim et al. 2015), we allow a network program to be described as a set of

concurrently-operating �nite state machines (FSMs) consisting of event-driven transitions between global

network states. We generalize this by allowing the input network program to be a set of event nets, which are

1-safe Petri nets where each transition corresponds to a network event, and each place corresponds to a set of

forwarding rules. �is model extends network event structures (McClurg et al. 2016) to enable straightforward

modeling of programs with loops. An advantage of extending this particular programming model is that its

programs can be e�ciently implemented without packet races (the details are discussed further in Section 3).

Problem Statement. Our synthesizer has two inputs: (1) a set of event nets that represents sequential processes

of the distributed controller, and (2) a linear temporal logic (LTL) speci�cation of paths that packets are allowed

to take. For example, the network programmer can specify custom properties such as “packets from H1 should

always pass through Middlebox S5 before exiting the network.” �e output is an event net consisting of the input

event nets with added synchronization constructs, such that all packets traversing the network satisfy the LTL

speci�cation. In other words, the added synchronization eliminates problems caused by controller races. Since

we use event nets, which can be implemented without packet races, both types of races are eliminated in the

�nal implementation of the distributed controller.

Algorithm. Our main contribution is a counterexample-guided inductive synthesis (CEGIS) algorithm for event

nets. �is consists of (1) a repair engine that synthesizes a candidate event net from the input event nets and

a �nite set of known counterexample traces, and (2) a veri�er that checks whether the candidate satis�es the

LTL property, producing a counterexample trace if not. �e repair engine uses SMT to produce a candidate

event net by adding synchronization constructs which ensure that it does not contain the counterexample traces

discovered so far. Repairs are chosen from a variety of constructs (barriers, locks, condition variables), and other

constructs can be added as needed. Given an event net, the veri�er checks whether it is deadlock-free (i.e., there is

an execution where all processes can proceed without deadlock), whether it is 1-safe, and whether it satis�es the

CAV, Vol. ?, No. ?, Article 77. Publication date: July 2017.

Synchronization Synthesis for Network Programs • 77:3

LTL property. We encode this as an LTL model-checking problem—the check fails (and returns a counterexample)

if the event net exhibits an incorrect interleaving.

Evaluation. We have implemented our techniques, and evaluated our tool on examples from the SDN literature.

We show that our prototype implementation can �x realistic concurrency bugs, and can readily scale to problems

featuring real network topologies of 1000+ switches.

Contributions. �is paper contains the following contributions:

• We describe event nets, a new model for representing concurrent network programs, which extends

several previous approaches, enables using and reasoning about many synchronization constructs, and

admits an e�cient distributed implementation (Sections 2-3).

• We present synchronization synthesis for event nets. To our knowledge, this is the �rst counterexample-

guided technique that automatically adds synchronization constructs to Petri-net based programs. Our

solution includes a model checker for event nets, and an SMT-based repair engine for event nets which can

insert a variety of synchronization constructs (Section 4).

• We demonstrate the usefulness and e�ciency of our approach through several real-world examples

featuring real network topologies (Section 5).

2 NETWORK PROGRAMMING USING EVENT NETS
Network programs change global forwarding behavior of the network in response to events. Recently proposed

network programming languages such as OpenState (Bianchi et al. 2014) and Kinetic (Kim et al. 2015) allow a

network program to be speci�ed as a set of �nite state machines, where each state is a static con�guration (i.e.,

a set of forwarding rules at switches), and the transitions are driven by events in the network (packet arrivals,

etc.). In this case, support for concurrency is enabled by allowing FSMs to execute in parallel, and any con�icts

of the global forwarding state due to concurrency are avoided by either requiring the FSMs to be restricted to

disjoint types of tra�c, or by ignoring con�icts entirely. Neither of these options solves the problem—as we

will see here (and in the Evaluation), serious bugs can arise due to unexpected interleavings. Overall, network

programming languages typically do not have strong support for handling (and reasoning about) concurrency,

and this is becoming especially necessary, as SDNs are moving to distributed or multithreaded controllers.

Event Nets for Network Programming. We introduce a new approach which extends the �nite-state view of

network programming with support for concurrency and synchronization. Our model is called event nets, an

extension of 1-safe Petri nets, a well-studied framework for concurrency. An event net is a set of places (denoted

as circles) which are connected via directed edges to events (denoted as squares). �e current state of the program

is indicated by a marking which assigns at most one token to each place, and an event can change the current

marking by consuming a token from each of its input places and emi�ing a token to each of its output places.

Since event nets model network programs, each place is labeled with a static network con�guration, and at any

time, the global con�guration is taken as the union of the con�gurations at the marked places.

Figure 1(b) shows an example event net. In this paper, we will use integer IDs (and alternatively, colors) to

distinguish static con�gurations. Figure 1(a) shows the network topology corresponding to this example. In

a given topology, the con�gurations associated with the event net are drawn in the color of the places which

contain them, and also labeled with the corresponding place IDs. For example, place 3 in Figure 1(b) is orange,

and this corresponds to enabling forwarding along the orange path H3, S3, S5 (labeled with “3”) in the topology

shown in Figure 1(a). In the initial state of this event net, places 1, 4 contain a token, meaning forwarding is

initially enabled along the red (1) and green (4) paths.

Event Nets and Synchronization. Event nets allow us to specify synchronization easily. In Figure 1(c), we have

added places 7, 8—this makes event C unable to �re initially (since it does not have a token on input place 8),

CAV, Vol. ?, No. ?, Article 77. Publication date: July 2017.

77:4 • Jedidiah McClurg, Hossein Hojjat, and Pavol Černý

(a) Configurations (b) Input Net (c) Iteration 1 (d) Output Net

Fig. 1. Example #1

forcing it to wait until event B �res (B consumes a token from places 2, 7 and emits a token at 8). Ultimately, we

will show how these types of synchronization skeletons can be produced automatically. In Figure 1(b)-(d), the

original event net is shown in black (solid lines), and synchronization constructs produced by our tool are shown

in blue (dashed lines). We will now demonstrate by example how our tools works.

Example—Tenant Isolation in a Datacenter. Koponen et al. (2014) describe an approach for providing virtual
networks to tenants (users) of a datacenter, allowing them to connect virtual machines (VMs) using virtualized

networking functionality (middleboxes, etc.). An important aspect of this is ensuring isolation between tenants.

For example, one tenant intercepting another tenant’s tra�c would be a severe security violation.

Let us extend the simple example described in the Introduction. In Figure 1(a), S5 is a physical device initially

being used as a virtual middlebox processing Tenant X’s tra�c, which is being sent along the red (1) and green

(4) paths. We wish to perform an update in the datacenter which allows Tenant Y to use S5, and moves the

processing of Tenant X’s tra�c to a di�erent physical device. Let us assume that for e�ciency, two controllers

will be used to execute this update—path 1 is taken down and path 3 is brought up by C1, and path 4 is taken

down and path 6 is brought up by C2. �e event net for this network program is shown in Figure 1(b). �e

combinations of con�gurations 1, 6 and 4, 3 both allow tra�c to �ow between tenants, violating isolation.

We can formalize the isolation speci�cation using the following two properties:

(1) ϕ1: no packet originating at H1 should arrive at H4, and

(2) ϕ2: no packet originating at H3 should arrive at H2.

Properties like these which describe single-packet traces can be encoded straightforwardly in linear temporal

logic (LTL). Note that instead of LTL, we can use the more user-friendly PDL, or a domain-speci�c speci�cation

language that can be compiled to LTL. Given an LTL speci�cation, we ask a veri�er whether the event net has any

reachable marking whose con�guration violates the speci�cation. If so, a counterexample trace is provided, i.e., a

sequence of events (starting from the initial state) which allows the violation. For example, using the speci�cation

ϕ1 ∧ ϕ2 and the Figure 1(b) event net, our veri�er informs us that the sequence of events C,D leads to a property

violation—in particular, when the tokens are at places 6, 1, tra�c is allowed along the path H1, S1, S5, S4,H4,

violating ϕ1. Next, we ask a repair engine to suggest a �x for the event net which disallows the trace C,D, and in

this case, our tool produces 1(c). Again, we call the veri�er, which now gives us the counterexample trace A,B
(when the tokens are at 4, 3, tra�c is allowed along the path H3, S3, S5, S2,H2, violating property ϕ2). When we

ask the repair engine to produce a �x which avoids both traces C,D and A,B, we obtain the event net shown in

1(d). A �nal call to the veri�er con�rms that this event net satis�es both properties.

�e synchronization skeleton produced in Figure 1(d) functions as a barrier—it prevents tokens from arriving

at 6 or 3 until both tokens have moved from 4, 1. �is ensures that 1, 4 must both be taken down before bringing

up paths 3, 6. �e following sections describe this synchronization synthesis approach in detail.

CAV, Vol. ?, No. ?, Article 77. Publication date: July 2017.

Synchronization Synthesis for Network Programs • 77:5

3 SYNCHRONIZATION SYNTHESIS FOR EVENT NETS
Before describing our synthesis algorithm in detail, we �rst need to formally de�ne the concepts/terminology

mentioned so far.

SDN Preliminaries. A packet pkt is a record of �elds { f1; f2; · · · ; fn }, where �elds f represent properties such

as source and destination address, protocol type, etc. �e (numeric) values of �elds are accessed via the notation

pkt. f , and �eld updates are denoted pkt[f ← n], where n is a numeric value. A switch sw is a node in the network

with one or more ports pt. A host is a switch that can be a source or a sink of packets. A location l is a switch-port

pair n:m. Locations may be connected by (bidirectional) physical links (l1, l2).
A located packet lp = (pkt, sw, pt) is a tuple consisting of a packet and a location sw:pt. A packet-trace (history)

h is a non-empty sequence of located packets. Packet forwarding is dictated by a network con�guration C . We

model C as a relation on located packets: if C (lp, lp′), then the network maps lp to lp′, possibly changing its

location and rewriting some of its �elds. Since C is a relation, it allows multiple output packets to be generated

from a single input. In a real network, the con�guration only forwards packets between ports within each

individual switch, but for convenience, we assume that our C also captures link behavior (forwarding between

switches), i.e. C ((pkt,n1,m1), (pkt,n2,m2)) and C ((pkt,n2,m2), (pkt,n1,m1)) hold for each link (n1:m1,n2:m2).
Consider a packet-trace h = lp

0
lp

1
lp

2
· · · lpn . We say that h is allowed by con�guration C if and only if ∀1 ≤ k ≤

n : C (lpk−1
, lpk), and we denote this as h ∈ C . We use h(i) to denote lpi , i.e., the i-th packet in the trace, and hi to

denote the corresponding su�x of the trace, i.e., lpi lpi+1
· · · lpn .

Petri Net Preliminaries. As we have seen, a Petri net is a transition system where one or more tokens can move

between places, as dictated by transitions. Petri nets provide a �exible framework for concurrency that we can

utilize. For example, the Petri net in Figure 2(a) shows how sequencing can be modeled—transition a must �re �rst

(moving the token to place 2), before transition b can �re. Figure 2(b) shows how con�ict can be modeled—either

c can �re (moving the token to place 5), or d can �re, but not both. Figure 2(c) shows how concurrency can be

modeled—transition e can �re (moving the token from place 7 to place 8), and f can �re independently.

Our treatment of Petri nets closely follows that of Winskel (1987) (Chapter 3). A Petri net is a tuple (P ,T , F ,M0),
where P is a set of places (shown as circles),T is a set of transitions (shown as squares), F ⊆ (P×T)∪(T×P) is a set of

directed edges, and M0 is multiset of places denoting the initial marking (shown as dots on places). We require that

P , ∅, and ∀x ∈ P : M0 (x) > 0 ∨ (∃t ∈ T : (x , t) ∈ F ∨ (t ,x) ∈ F), and ∀t ∈ T : ∃x ,y ∈ P : (x , t) ∈ F ∧ (t ,y) ∈ F .

Given a transition t , we de�ne its post- and pre-places as t• = {x ∈ P : (t ,x) ∈ F } and
•t = {x ∈ P : (x , t) ∈ F }

respectively. �is can be extended in the obvious way to T ′• and
•T ′, for subsets T ′ of T .

A marking indicates the number of tokens at each place. We say that a transition t ∈ T is enabled by a marking

M (denoted t ⊆ M) if and only if ∀x ∈ P : (x , t) ∈ F =⇒ M (x) > 0. A marking Mi can transition into another

marking Mi+1 as dictated by the �ring rule: Mi
T ′
−−→ Mi+1 ⇐⇒ T ′ ⊆ Mi ∧Mi+1 = Mi −

•T ′ +T ′•. �e state graph

of a Petri net is a graph where each node is a marking (the initial node is M0), and an edge (Mi
t
−→ Mj) is in the

graph if and only if we have Mi
{t }
−−→ Mj in the Petri net. A trace τ of a Petri net is a sequence t0t1 · · · tn such that

(a) (b) (c)

Fig. 2. Petri nets: (a) sequencing, (b) conflict, (c) concurrency.

CAV, Vol. ?, No. ?, Article 77. Publication date: July 2017.

77:6 • Jedidiah McClurg, Hossein Hojjat, and Pavol Černý

there exist Mi
ti
−→ Mi+1 in the Petri net’s state graph, for all 0 ≤ i ≤ n. We de�ne markings(t0t1 · · · tn) to be the

sequence M0M1 · · ·Mn+1, where M0

t0

−→ M1

t1

−→ · · ·
tn
−−→ Mn+1 is in the state graph. We can project a trace onto a

Petri net (denoted τ B N) by removing any transitions in τ which are not in N . A 1-safe Petri net is a Petri net in

which for any marking Mj reachable from the initial marking M0, we have ∀x ∈ P : 0 ≤ Mj (x) ≤ 1.

Event Nets. An event net E is a pair (P , λ), where P is a 1-safe Petri net, and λ labels each place with a network

con�guration, and each transition with an event. An event is a tuple (ψ , l), where l is a location, andψ can be

any predicate over network state, packet locations, etc. For instance, in (McClurg et al. 2016), an event encodes

an arrival of a packet with a header matching a given predicate to a given location.

Semantics of Event Nets. Given event net marking M , we denote the global con�guration of the network

C (M), given as C (M) =
⋃
y∈M λ(y). Given event net E = (P , λ), let T (E) be its set of traces. T (E) is de�ned

as a set of traces of P . Given trace τ of an event net, we use con�gs(τ) to denote

⋃
M ∈markings(τ) C (M), i.e., the

set of global con�gurations reachable along that trace. Given event net E, we de�ne Traces(E) to be the set

{h : ∃τ ∈ T (E)∃C ∈ con�gs(τ).(h ∈ C)}. �e set Traces(E) is the set of packet traces allowed by E. Note that in

this de�nition, the labeling of transitions by λ does not play a role. We could de�ne a more precise semantics by

allowing transitions to execute only if the event occurred (as in (McClurg et al. 2016)), but here we choose the

overapproximate semantics in order to be independent of the exact types of events and event occurrences.

Implementability of Event Nets. Producing a distributed implementation for an event-driven program can be

di�cult. One primary di�culty is the possibility of distributed con�icts when the global state changes due to

events. For example, in an application where two di�erent switches listen for the same event, and only the �rst
switch to detect the event should update the state, we could easily encounter a con�ict where both switches

think they are the �rst to detect the event, and thus both a�empt to update the state. One way to resolve this

is by using expensive coordination between the two switches to agree on which is “�rst.” McClurg et al. (2016)

present a di�erent solution, which guarantees e�cient implementations (i.e., without expensive coordination) for

network programs encoded as event structures, when a certain locality condition is satis�ed.

We can also make use of such a locality condition. We de�ne local event net to be an event net in which for

any two events e1 = (ψ1, l1) and e2 = (ψ2, l2), we have (•e1 ∩
•e2 , ∅) ⇒ (l1=l2), i.e., any two events sharing a

common input place must be handled at the same location. Winskel (1987) (Chapter 3) shows that a 1-safe Petri

net can be “unfolded” into an occurrence net, which represents a restricted form of event structure. �us, we can

produce a local event structure from a local event net, which gives us the following �eorem 3.1. �e details are

omi�ed due to space constraints, but in essence, the theorem follows from �eorem 1 in (McClurg et al. 2016).

Intuitively, it implies that there are no packet races in the implementation, since the theorem says that each

packet is processed by a trace in one of the reachable con�gurations. In other words, a packet is never processed

in a mix of con�gurations.

Theorem 3.1 (Implementability). Each local event net E has an e�cient distributed implementation whose
single-packet traces are a subset of Traces(E).

Packet-Trace Speci�cations. Beyond simply freedom from packet races, we wish to rule out controller races, i.e.,

unwanted interleavings of concurrent events in an event net. In particular, we use linear temporal logic (LTL) to

specify formulas that should be satis�ed by each packet-trace possible in each global con�guration. We use LTL

because it is a very natural language for constructing formulas that describe traces. For example, if we want to

describe traces for which some condition φ eventually holds, we can construct the LTL formula F φ, and if we

want to describe traces where φ holds at each step, we can construct the LTL formula G φ.

Our LTL formulas are over a single packet pkt, which has a special �eld pkt.loc denoting the packet’s current

location. For example, we can use the property (pkt.loc=H1 ∧ pkt.dst=H2 =⇒ F pkt.loc=H2) to mean that any

CAV, Vol. ?, No. ?, Article 77. Publication date: July 2017.

Synchronization Synthesis for Network Programs • 77:7

f ∈ Field (packet �eld name)
n ∈ N (numeric value)
x ,y ::= pkt. f | pkt.loc | n | x + y | x − y | x ∗ y | x ÷ y (numeric expression)
a ::= true | false | x = y | x > y | x < y | x ≥ y | x ≤ y (atomic proposition)
φ,ψ ::= a | ¬φ | φ ∧ψ | φ ∨ψ | φ ⇒ ψ | φ ⇔ ψ | X φ | φ Uψ | φ R ψ | G φ | F φ (formula)

Fig. 3. LTL syntax.

packet located at Host 1 destined for Host 2 will eventually reach Host 2. Given a trace τ of an event net, we use

the notation τ |= φ to mean that φ holds in each global con�guration C ∈ con�gs(τ).
LTL syntax is shown in Figure 3. �e basic formula is an atomic proposition, which is either true, false, or a

comparison between numeric expressions over the variable pkt. Formulas can be extended using the standard

logical operators negation (¬φ), conjunction (φ ∧ ψ), disjunction (φ ∨ ψ), implication (φ ⇒ ψ), and equality

(φ ⇔ ψ). Additionally, LTL provides the next operator X φ, the until operator φ Uψ , the release operator φ R ψ ,

the always (globally) operator G φ, and the eventually (future) operator F φ. Given a packet-trace h and an

LTL formula φ we de�ne the notion of h satisfying the formula (denoted h |= φ) using the following recursive

de�nition. We can extend this to a con�gurations by le�ing C |= φ mean that all packet-traces h ∈ C satisfy φ.

h |= a , h(0) |= a atomic proposition a holds in the �rst step

h |= ¬φ , ¬(h |= φ) φ does not hold

h |= (φ ∧ψ) , (h |= φ) ∧ (h |= ψ) both φ andψ hold

h |= (φ ∨ψ) , (h |= φ) ∨ (h |= ψ) either φ orψ holds

h |= (φ ⇒ ψ) , h |= (¬φ ∨ψ) if φ holds, thenψ holds

h |= (φ ⇔ ψ) , h |= ((φ ⇒ ψ) ∨ (ψ ⇒ φ)) φ holds if and only ifψ holds

h |= X φ , h1 |= φ φ holds at the next step

h |= φ Uψ , ∃i ≥ 0 : (hi |= ψ ∧ (∀0 ≤ j < i : hj |= φ)) eventuallyψ holds, and φ holds untilψ holds

h |= φ Rψ , ¬(¬φ U ¬ψ) ψ holds until both φ andψ hold

h |= G φ , false R φ φ always holds

h |= F φ , true U φ eventually φ holds

Note that the above packet-traces are assumed to be in�nite, so for the purposes of the de�nition, we simply

consider a �nite trace to be an in�nite one where the last step repeats inde�nitely. For e�ciency purposes, we

forbid the next operator (resulting in what is known as stu�er-invariant LTL). We have found this restricted form

of LTL to be su�cient for expressing real-world properties about network con�gurations.

Processes and Synchronization Skeletons. �e input to our algorithm is a set of disjoint event nets, which we

call processes—we can use simple pointwise-union of the tuples (denoted as

⊔
) to represent this as a single

event net E =
⊔
{E1,E2, · · · ,En }. Given an event net E = (P ,T , F ,M0), a synchronization skeleton S for E

is a tuple (P ′,T ′, F ′,M ′
0
), where P ∩ P ′ = ∅, T ∩ T ′ = ∅, F ∩ F ′ = ∅, and M0 ∩ M ′

0
= ∅, and where E ′ =

(P ∪ P ′,T ∪T ′, F ∪ F ′,M0 ∪M ′
0
) is an event net, which we denote E ′ =

⊔
{E, S }.

Deadlock Freedom and 1-Safety. We want to avoid adding synchronization which fully deadlocks any process

Ei . Let E ′ be an event net containing processes E1,E2, · · · ,En , and let Pi ,Ti be the places and transitions of

each Ei . We say that E ′ is deadlock-free if and only if there exists a trace τ ∈ E ′ such that ∀0 ≤ i ≤ n,Mj ∈

markings(τ), t ∈ Ti : ((•t ∩ Pi) ⊆ Mj) ⇒ (∃Mk ∈ markings(τ) : k ≥ j ∧ (t• ∩ Pi) ⊆ Mk), i.e. a trace of E ′ where

transitions t of each Ei �re as if they experienced no interference from the rest of E ′. We encode this as an LTL

formula, obtaining a progress constraint φproдr for E ′. Similarly, we want to avoid adding synchronization which

produces an event net that is not 1-safe. We can also encode this as an LTL constraint φ1saf e .

CAV, Vol. ?, No. ?, Article 77. Publication date: July 2017.

77:8 • Jedidiah McClurg, Hossein Hojjat, and Pavol Černý

Fig. 4. Synchronization Synthesis—System Architecture

Fig. 5. Synchronization skeletons: (1) Barrier, (2) Condition Variable, (3) Mutex.

Synchronization Synthesis Problem. Given event net E =
⊔
{E1,E2, · · · ,En } and property φ, produce E ′ =⊔

{E, S } which correctly synchronizes E, i.e.,

(1) ∀τ ∈ traces(E ′) : (τ B E) ∈ traces(E), i.e., each τ of E ′ (modulo added events) is a trace of E, and

(2) ∀τ ∈ traces(E ′) : τ |= φ, i.e., all reachable con�gurations satisfy φ, and

(3) ∀τ ∈ traces(E ′) : τ |= φ1saf e , i.e., E ′ is 1-safe, and

(4) ∃τ ∈ traces(E ′) : τ |= φproдr , i.e., E ′ deadlock-free.

4 FIXING AND CHECKING SYNCHRONIZATION IN EVENT NETS
Figure 4 shows the architecture of our solution—an instance of the CEGIS algorithm in (Gulwani et al. 2011; Jha et al.

2010) which is now set up for problems of the form ∃E ′((∀τ ∈ E ′ : ϕ (E ′,E,φ,φ1saf e)) ∧¬(∀τ ∈ E
′

: τ 6 |= φproдr)),
where E,E ′ are input/output event nets, and ϕ captures 1-3 of the above speci�cation. Our event net repair engine
(Section 4.1) performs synthesis (producing candidate solutions for ∃), and our event net veri�er (Section 4.2)

performs veri�cation (checking ∀).

Algorithm 1 shows the pseudocode. �e function makeProperties produces the φ1saf e ,φproдr formulas as

described in Section 3. We will now describe the details of the other functions.

4.1 Repairing Event Nets Using Counterexample Traces
�e repair engine uses an SMT solver to perform the search for synchronization constructs to �x a �nite set of

bugs (given as event-net traces which should not be allowed). Figure 5 shows three types of synchronization
skeletons which our repair engine can add between the processes of the input event net E ′. As the �gure indicates,

the barrier skeleton does not allow events b,d to �re until both a, c have �red. �e condition variable requires

event a to �re before event c can �re. �e mutex ensures that the events between a and b (inclusive) cannot

interleave with the events between c and d (inclusive). Our synthesis algorithm explores di�erent combinations

of these skeletons, up to a given set of bounds.

CAV, Vol. ?, No. ?, Article 77. Publication date: July 2017.

Synchronization Synthesis for Network Programs • 77:9

Algorithm 1: Synchronization Synthesis Algorithm

Input: event net E =
⊔
{E1,E2, · · · ,En }, LTL property φ, upper bound Y on the number of added places,

upper bound X on the number of added transitions, upper bound I on the number of synchronization

skeletons

Result: event net E ′ such that E ′ correctly synchronizes E
1 initRepairEngine(E1,E2, · · · ,En ,X ,Y , I) // initialize repair engine (§4.1)

2 E ′ ← E

3 (φ1saf e ,φproдr) ← makeProperties(E1,E2, · · · ,En)

4 while true do
5 ok ← true
6 props ← {φ,φ1saf e ,φproдr }

7 for φ ′ ∈ props do
8 τctex ← verify (E ′,φ ′) // check the property (§4.2)

9 if (τctex = ∅ ∧ φ ′ = φproдr) ∨ (τctex , ∅ ∧ φ
′ = φ1saf e) then

10 di�erentRepair () // try different repair (§4.1)

11 ok ← f alse

12 else if τctex , ∅ ∧ φ ′ , φproдr then
13 assertCtex (τctex) // record counterexample (§4.1)

14 ok←f alse

15 if ok then
16 return E ′ // return correctly-synchronized event net

17 E ′ ← repair (E ′) // generate new candidate

18 if E ′ = ⊥ then
19 return fail // cannot repair

Repair Engine Initialization. Algorithm 1 calls initRepairEngine(E1,E2, · · · ,En ,X ,Y , I), which “initializes” the

function symbols shown in Figures 6 and 7 with the values from the input event nets, and asserts well-formedness

constraints. Labels in bold/blue are function symbol names, and cells are the corresponding values. For example,

Petri is a 2-ary function symbol, and Mark is a 1-ary function symbol. Note that there is a separate Ctex,Acc, Trans
for each k (where k is a counterexample index). �e return value type is indicated in parentheses a�er the name

of each function symbol. For example, le�ing B denote the Boolean type {true, false}, the types of the function

symbols are: Petri : N × N → B × B, Mark : N → N, Loc : N → N × N, Type : N → N, Pair : N → N × N × N,

Range : N→ N × N × N × N, Len : N→ N, Ctexk : N × N→ N, Acck : N→ B, Transk : N→ N.

�e regions highlighted in Figure 6 are “set” (asserted equal) to values matching the input event net. In

particular, Petri(y,x) is of the form (b1,b2), where we set b1 if and only if there is an edge from place y to

transition x in E, and similarly set b2 if and only if there is an edge from transition x to place y. Mark(y) is set to

1 if and only if place y is marked in E. Loc(x) is set to the location (switch/port pair) of the event at transition x .

�e bound Y limits how many places can be added, and X limits how many transitions can be added.

�e bound I limits how many synchronization skeletons can be used simultaneously. Each “row” i of the

Type, Pair, Range symbols represents a single added skeleton. More speci�cally, Type(i) identi�es one of the

three types of skeletons. Up to J processes can participate in each skeleton (Figure 5 shows the skeletons for 2

processes, but they generalize to j ≥ 2), and by default, J is set to the number of processes. �us, Pair (i, j) is a

tuple (id, fst, snd), where id identi�es a process, and fst, snd is a pair of events in that process. Range(i) is a tuple

CAV, Vol. ?, No. ?, Article 77. Publication date: July 2017.

77:10 • Jedidiah McClurg, Hossein Hojjat, and Pavol Černý

1 2 · · · n n+1 n+2 · · · n+X

1

2

...

m

m+1

m+2

...

m+Y

1 2 · · · 2 ·Len(k)+1

p
l
a
c
e
s

a
d

d
e
d

p
l
a
c
e
s

transitions added transitionsPetri (B × B) Mark (N) Ctexk (N)

Acck (B)

Transk (N)Loc (N × N)

Fig. 6. SMT function symbols—event net encoding.

1

2

...

I

1 2 · · · J

s
k

e
l
e
t
o

n
s

processesType (N) Pair (N × N × N) Range (N × N × N × N)

Fig. 7. SMT function symbols—synchronization skeletons encoding.

(pMin, pMax, tMin, tMax), where pMin, pMax reserve a range of rows in the added places section of Figure 6, and

similarly, tMin, tMax reserve a range of columns in the added transitions.
We assert a conjunction ϕдlobal of well-formedness constraints to ensure that proper values are used to �ll

in the empty (un-highlighted) cells of Figure 6. �e primary constraint forces the Petri cells to be populated as

dictated by any synchronization skeletons appearing in the Type, Pair, Range rows. For example, given a row

i where Type(i) = 1 (barrier synchronization skeleton), we would require that Range(i) = (y1,y2, t1, t2), where

(y2 −y1) + 1 = 4 and (t2 − t1) + 1 = 1, i.e., 4 new places and 1 new transition would be reserved. Additionally, the

values of Petri for rows y1 through y2 and columns t1 through t2 would be set to match the edges for the barrier
construct in Figure 5. Several other constraints are captured by ϕдlobal—due to space limitations, we will not

present the full details, but the following list summarizes the high-level descriptions of the ϕдlobal constraints:

(1) For each active cell (id, fst, snd) in Pair , we require that fst, snd are from the same input process, and the

events between fst and snd (inclusive) in E form a simple chain (i.e., no branching behavior). Additionally,

di�erent cells on the same row of Pair are from di�erent processes, i.e., they have di�erent id values.

(2) Cells are in decreasing order of id in each row of Pair .
(3) No two active rows of Pair are equal.

(4) No two intervals represented in the Range cells are overlapping.

(5) Each interval in the Range cells stays within the added places/transitions area of Petri.

CAV, Vol. ?, No. ?, Article 77. Publication date: July 2017.

Synchronization Synthesis for Network Programs • 77:11

(6) Each row of Type is between 0 and 3 (no skeleton (inactive row), or one of the 3 skeleton types respectively).

(7) Un-used places/transitions in the added places/transitions area of Petri are set to zero.

(8) As described above, interval lengths in Range and corresponding Petri/Mark cells are set based on Type.
(9) Mark values are between 0 and 1 (enforcing 1-safety).

(10) Two transitions having a common input place have equal corresponding values of Loc (enforcing locality).

(11) Each Loc value is a valid location in the network topology.

Asserting Counterexample Traces. Once the repair engine has been initialized, Algorithm 1 can add counterex-

ample traces by calling assertCtex (τctex). To add the k-th counterexample trace τk = t0t1 · · · tn−1, we assert the

conjunction ϕk of the following constraints. In essence, these constraints make the columns of Ctexk correspond

to the sequence of markings of the current event net in Petri if it were to �re the sequence of transitions τk . More

speci�cally, Ctexk is inductively de�ned asCtexk (1) = Mark and for x > 1,Ctexk (x) is equal to the marking that

would be obtained if tx−1 were to �re inCtexk (x − 1). �e symbol Acck is similarly de�ned as Acck (1) = true and

for x > 1, Acck (x) ⇐⇒ (Acck (x − 1) ∧ (tx−1 is enabled in Ctexk (x − 1))). We also assert a constraint requiring

that Acck must become false before the end of the trace.

An important adjustment must be made to handle general counterexamples. Speci�cally, if a trace of the

event net in Petri is equal to τk modulo transitions added by the synchronization skeletons, that trace should

be rejected just as τk would be. We do this by instead considering the trace τ ′k = 0, t0, 0, t1, · · · , 0, tn−1, and for

the “0” transitions, we set Ctexk (x) as if we �red any enabled added transitions in Ctexk (x − 1), and for the ti
transitions, we update Ctexk (x) as described previously. �erefore, the adjusted constraints ϕk are as follows:

(1) �e �rst column of Ctexk is equal to Mark.

(2) Len(k)=n ∧ Acck (1) ∧ ¬Acck (2 · Len(k) + 1).
(3) Acck (x) ⇐⇒ (Acck (x − 1) ∧ (Transk (x)=0 ∨ (Transk (x) is enabled in Ctexk (x − 1)))).
(4) For odd indices x ≥ 3, Transk (x) = t (x−3)/2, and Ctexk (x) is set as if Transk (x) �red in Ctexk (x − 1).
(5) For even indices x ≥ 2, Transk (x) = 0, and Ctexk (x) is set as if all enabled added transitions �red in

Ctexk (x − 1).
�e last constraint works because for our synchronization skeletons, any added transitions that occur immediately

a�er each other in a trace can also occur in parallel. �e constraint ¬Acck (2 · Len(k) + 1) makes sure that any

synchronization generated by the SMT solver will not allow the trace to be accepted.

Trying a Di�erent Repair. �e di�erentRepair () function in Algorithm 1 makes sure the repair engine does

not propose the current candidate again. When this is called, we prevent the current set of synchronization

skeletons from appearing again by taking the conjunction of the Type and Pair values, as well as the values of

Mark corresponding to the places reserved in Range, and asserting the negation. We denote the current set of all

such assertions ϕskip .

Obtaining an Event Net. When the synthesizer calls repair (E ′), we query the SMT solver for satis�ability of the

current constraints. If satis�able, values of Petri,Mark in the model can be used to add synchronization skeletons

to E ′. We can use optimizing functionality of the SMT solver (or a simple loop which asserts progressively smaller

bounds for an objective function) to produce a minimal number of synchronization skeletons.

Note that formulas ϕдlobal ,ϕskip ,ϕ1, · · · have polynomial size in terms of the input event net size and bounds

Y ,X , I , J , and are expressed in the decidable fragment QF UFLIA (quanti�er-free uninterpreted function symbols

and linear integer arithmetic). We found this to scale well with modern SMT solvers (§5).

Lemma 4.1 (Correctness of the Repair Engine). If the SMT solver �nds that ϕ = ϕдlobal ∧ϕskip ∧ϕ1∧· · ·∧ϕk
is satis�able, then the event net represented by the model does not contain any of the seen counterexample traces
τ1, · · · ,τk . If the SMT solver �nds that ϕ is unsatis�able, then all synchronization skeletons within the bounds fail to
prevent some counterexample trace.

CAV, Vol. ?, No. ?, Article 77. Publication date: July 2017.

77:12 • Jedidiah McClurg, Hossein Hojjat, and Pavol Černý

Algorithm 2: Event Net Veri�er (Promela Model)

1 marked ← initMarking() // initial marking from input event net

2 run singlePacket, transitions // start both processes

3 Process singlePacket:
4 lock() // acquire lock

5 status ← 1

6 pkt ← pickPacket (); n ← pickHost () // nondeterministically choose packet / host

7 do
8 pkt ← movePacket (pkt,marked) // move packet according to current configuration

9 while pkt.loc , drop ∧ ¬isHost (pkt.loc)
10 status ← 2 // processing of the packet is finished

11 unlock() // release lock

12 Process transitions:
13 while true do
14 lock() // acquire lock

15 t ← pickTransition(marked) // nondeterministically choose enabled transition

16 marked ← updateMarking(t ,marked) // fire transition

17 unlock() // release lock

4.2 Checking Event Nets
�is section describes the verify (E ′,φ ′) function in Algorithm 1. From event net E ′, we produce a Promela model

which we provide to an o�-the-shelf LTL model checker. Algorithm 2 shows the model pseudocode, which is

an e�cient implementation of the semantics described in Section 3. Global variable marked is a list of boolean

�ags, indicating which places currently contain a token. �e initMarking macro sets the initial values based on

the initial marking of E ′. �e singlePacket process randomly selects a packet pkt and puts it at a random host,

and then moves pkt until it either reaches another host, or is dropped (pkt.loc = drop). �e movePacket macro

modi�es/moves pkt according to the current marking’s con�guration. �e pickTransition macro randomly selects

a transition t ∈ E ′, and updateMarking updates the marking to re�ect t �ring.

We ask the model checker for a counterexample trace demonstrating a violation of φ ′ in this model. If found,

we extract the sequence of transitions t chosen by pickTransition. We generalize this sequence by removing any

transitions which are not in the original input event nets. �is sequence is returned as τctex to Algorithm 1.

Lemma 4.2 (Correctness of the Verifier). If the veri�er returns counterexample τ , then E ′ violates φ in one of
the global con�gurations in con�gs(τ). If the veri�er does not return a counterexample, then all traces of E ′ satisfy φ.

4.3 Overall Correctness Results
Finally, we characterize the correctness of our synchronization synthesis approach �e proofs of the following

theorems use Lemmas 4.1 and 4.2, as well as �eorem 3.1.

Theorem 4.3 (Soundness of Algorithm 1). Given E and φ, if Algorithm 1 returns an event net E ′, then E ′

correctly synchronizes E with respect to φ.

Theorem 4.4 (Completeness of Algorithm 1). If there exists an E ′ =
⊔
{E, S }, where |S | ≤ I and synchroniza-

tion skeletons S have fewer than X total transitions and fewer than Y total places, and E ′ correctly synchronizes E,
then our algorithm will return such an E ′. Otherwise, the algorithm returns “fail.”

CAV, Vol. ?, No. ?, Article 77. Publication date: July 2017.

Synchronization Synthesis for Network Programs • 77:13

benchmark

#number time (sec.)

switch iter ctex skip SMT build verify synth misc total

ex01-isolation 5 2 2 0 318 0.48 0.45 0.04 0.50 1.47

ex02-con�ict 3 20 3 16 359 0.29 1.86 0.68 1.98 4.81

ex03-loop 4 3 2 0 318 0.50 0.72 0.06 0.60 1.88

ex04-composition 4 2 1 0 305 0.49 0.80 0.03 0.50 1.82

ex05-exclusive 3 2 1 0 448 5.00 0.60 0.03 0.56 6.20

Fig. 8. Performance of Examples 1-5.

5 IMPLEMENTATION AND EVALUATION
We have implemented a prototype of our synchronization synthesis tool. �e repair engine described in Section

4.1 utilizes the Z3 SMT solver, and the veri�er described in Section 4.2 utilizes the SPIN LTL model checker. In

this section, we evaluate our system by answering the following questions:

(1) Can we use our approach to model a variety of real-world network programs?

(2) Is our tool able to �x realistic concurrency-related bugs?

(3) Is the performance of our tool reasonable when applied to real networks?

We address #1 and #2 via case studies based on real concurrency bugs described in the networking literature, and

we address #3 by choosing one of these examples and trying di�erent increasingly-large topologies. Figure 8

shows performance results and quantitative metrics for the case studies. �e �rst group of columns denote the

number of switches (switch), CEGIS iterations (iter), SPIN counterexamples (ctex), event nets “skipped” due to a

deadlock-freedom or 1-safety violation (skip), and formulas asserted to the SMT solver (smt). �e second group of

columns report the runtime of the SPIN veri�er generation/compilation (build), SPIN veri�cation (verify), repair

engine (synth), various auxiliary/initialization functionality (misc), and overall execution time (total). We ran all

experiments on a machine with 20GB RAM and a 3.2 GHz 4-core Intel i5-4570 CPU.

Example #1—Tenant Isolation in a Datacenter. We used our tool on the example described in Section 2. We

formalize the isolation property using the following LTL properties ϕ1 and ϕ2.

ϕ1 , G(loc=H1 =⇒ G(loc,H4))

ϕ2 , G(loc=H3 =⇒ G(loc,H2))

Our tool �nds the barrier shown in Figure 1(d), which properly synchronizes the event net to avoid isolation

violations, as described in Section 2.

Example #2—Con�icting Controller Modules. In a real bug (El-Hassany et al. (2016)) encountered using the POX

SDN controller, two concurrent controller modules Discovery and Forwarding made con�icting assumptions about

which forwarding rules should be deleted, resulting in packet loss. Figure 9(a) shows a simpli�ed version of

such a scenario, where the le� side (1,A, 2,B) corresponds to the Discovery module, and the right side (4,C, 3,D)

corresponds to the Forwarding module. In this example, Discovery is responsible for ensuring that packets can be

forwarded to H1 (i.e., that the con�guration labeled with 2 is active), and Forwarding is responsible for choosing a

path for tra�c from H3 (either the path labeled 3 or 4). In all cases, we require that no tra�c from H3 is dropped.

We formalize this requirement using the following LTL property ϕ3.

ϕ3 , G(loc=H3 =⇒ G(loc,drop))

Our tool �nds the two condition variables which properly synchronize the event net to avoid packet loss. As shown

in Figure 9(a), this requires the path corresponding to place 2 to be brought up before the path corresponding to

CAV, Vol. ?, No. ?, Article 77. Publication date: July 2017.

77:14 • Jedidiah McClurg, Hossein Hojjat, and Pavol Černý

(a) Event net. (b) Configurations.

Fig. 9. Inputs for Example #2.

place 3 (i.e., eventC can only occur a�er A), and only allows it to be taken down a�er the path 3 is moved back to

path 4 (i.e., event B can only occur a�er D).

Example #3—Discovery Forwarding Loop. In a real bug scenario (Sco� et al. (2014)) the NOX SDN controller’s

discovery functionality a�empted to learn the network topology, but an unexpected interleaving of packets caused

a small forwarding loop to be created. We show how such a forwarding loop can arise due to an unexpected

interleaving of controller modules. In Figure 10(a), the Forwarding/Discovery modules are the le�/right sides

respectively. Initially, Forwarding knows about the red (1) path in Figure 10(b), but will delete these rules, and

later set up the orange (3) path. On the other hand, Discovery �rst learns that the green (4) path is going down,

and then later learns about the violet (6) path. Since these modules both modify the same forwarding rules, they

can create a forwarding loop when con�gurations 1, 6 or 4, 3 are active simultaneously.

(a) Event net. (b) Configurations.

Fig. 10. Inputs for Example #3.

We wish to disallow such forwarding loops, formalizing this requirement using the following LTL property ϕ4.

ϕ4 , G(status=1 =⇒ F(status=2))

As discussed in Section 4.2, status is set to 1 when the packet is injected into the network, and set to 2 when/if

the packet subsequently exits or is dropped. Our tool enforces this requirement by inserting a barrier, as in Figure

10(a), preventing the unwanted combinations of con�gurations.

Example #4—Policy Composition. In an update scenario (Canini et al. (2013)) involving overlapping policies,

one policy enforces HTTP tra�c monitoring and the other requires tra�c from a particular hosts(s) to waypoint
through a device (e.g., an intrusion detection system or �rewall). Problems arise for tra�c processed by the

intersection of these policies (e.g., HTTP packets from a particular host), causing a policy violation.

Figure 11(b) shows such a con�ict. �e le� process of 11(a) is tra�c monitoring, and the right process is

waypoint enforcement. HTTP tra�c is initially enabled along the red (1) path. Tra�c monitoring then intercepts

CAV, Vol. ?, No. ?, Article 77. Publication date: July 2017.

Synchronization Synthesis for Network Programs • 77:15

(a) Event net. (b) Configurations.

Fig. 11. Inputs for Example #4.

this tra�c and diverts it to H2 by se�ing up the orange (2) path and subsequently bringing it down to form the

blue path (3). Waypoint enforcement initially sets up the green path (5) through the waypoint S3, and �nally

allows tra�c to enter by se�ing up the violet (6) path from H1. For HTTP tra�c from H1 destined for H3, if

tra�c monitoring is not set up before the waypoint enforcement enables the path from H1, then this tra�c can

circumvent the waypoint (on the S2→ S4 path), violating the policy.

We can encode this speci�cation using the following LTL properties ϕ6 and ϕ7.

ϕ6 , G((pkt.type=HTTP ∧ pkt.loc=H5) ⇒ F(pkt.loc=H2 ∨ pkt.loc=H3))

ϕ7 , (¬(pkt.src=H1 ∧ pkt.dst=H3 ∧ pkt.loc=H3) W (pkt.src=H1 ∧ pkt.dst=H3 ∧ pkt.loc=S3))

Our tool �nds Figure 11(a), which forces tra�c monitoring to divert tra�c before waypoint enforcement proceeds.

Example #5—Topology Changes during Update. Peresı́ni et al. (2013) describe a scenario in which a controller

a�empts to set up forwarding rules, and concurrently the topology changes, resulting in a forwarding loop being

installed. Figure 12(b), examines a similar situation where the processes in Figure 12(a) interleave improperly,

(a) Event net. (b) Configurations.

Fig. 12. Inputs for Example #5.

resulting in a forwarding loop. �e le� process updates from the red (2) to the orange (3) path, and the right

process extends the green (5) to the violet (6) path (potential forwarding loops: S1, S3 and S1, S2, S3).

We use the loop-freedom property ϕ4 discussed in Example #3. Our tool �nds the mutex synchronization

skeleton shown in Figure 12(a). Note that both places 2, 3 are protected by the mutex, since either would interact

with place 6 to form a loop.

Scalability Experiments. Recall Example #1 (Figure 1(a)). Instead of the short paths between the pairs of hosts

H1,H2 and H3,H4, we gathered a large set of real network topologies, and randomly selected long host-to-host

CAV, Vol. ?, No. ?, Article 77. Publication date: July 2017.

77:16 • Jedidiah McClurg, Hossein Hojjat, and Pavol Černý

 0.1

 1

 10

 100

8 10 12 14 16 20 63 144
275

468
735

1088

T
im

e
 (

s)

Network size (# switches)

synthesize
verify
build

initialize

Fig. 13. Performance results: scalability of Example #1 using
Fat Tree topology.

(a) FatTree.

(b) Small World. (c) Topology Zoo.

Fig. 14. Example network topologies.

 0

 1

 2

 3

 4

 5

 6

 7

50 100
200

300
400

500
600

700
800

900
1000

T
im

e
 (

s)

Network size (# switches)

synthesize
verify
build

initialize

(a) using Small World topologies.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

5 10 14 18 20 22 24 26 30 34 37 43 53 56 65 82 754

T
im

e
 (

s)

Network size (# switches)

synthesize
verify
build

initialize

(b) using Topology Zoo topologies.

Fig. 15. Performance results: scalability of Example #1 (continued).

paths with a single-switch intersection, corresponding to Example #1. We used datacenter FatTree topologies (e.g.,

Figure 14a), scaling up the depth (number of layers) and fanout (number of links per switch) to achieve a maximum

size of 1088 switches, which would support a datacenter with 4096 hosts. We also used highly-connected (“small-

world”) graphs, such as the one shown in Figure 14b, and we scaled up the number of switches (ring size in the

Wa�s-Strogatz small-world model) to 1000. Additionally, we used 240 wide-area network topologies from the

Topology Zoo dataset—as an example, Figure 14c shows the NSFNET topology, featuring physical nodes across

the United States. �e results of these experiments are shown in Figure 13, 15a, and 15b. We note in all of the

experiments that the SMT component scales much more readily than building/running SPIN veri�ers.

6 RELATED WORK
Network Repair and Network Update Synthesis. Saha et al. (2015) and Hojjat et al. (2016) present approaches for

repairing a buggy network con�guration using SMT and a Horn-clause-based synthesis algorithm respectively.

Instead of repairing a static con�guration, our event net repair engine must repair a network program.

A network update is a simple network program—a situation where the global forwarding state of the network

must change. In the networking community, there are several proposals for packet- and �ow-level consistency

properties that should be preserved during an update. For example, per-packet and per-�ow consistency (Mahajan

and Wa�enhofer 2013; Reitbla� et al. 2012), and inter-�ow consistency (Liu et al. 2015). Many approaches solve

the problem with respect to di�erent variants of these consistency properties (Hong et al. 2013; Jin et al. 2014;

Ka�a et al. 2013; Ludwig et al. 2014; McClurg et al. 2015; Zhou et al. 2015). In contrast, we provide a new language

CAV, Vol. ?, No. ?, Article 77. Publication date: July 2017.

Synchronization Synthesis for Network Programs • 77:17

for succinctly describing how multiple updates can be composed, as well as an approach for synthesizing a

composition which respects customizable LTL properties over packet traces.

Concurrent Programming for Networks. Dudycz et al. (2016) present an algorithm to compose network updates

correctly with respect to loop freedom, and show that the problem of optimally doing so is NP-hard. Beyond

network updates, there has been work on composing network programs. For example, Pyretic has a programming

language which allows sequential/parallel composition of static policies—dynamic behavior can be obtained

via a sequence of policies (Monsanto et al. 2013). NetKAT is a mathematical formalism and compiler which

also allows composition of static policies (Anderson et al. 2014; Smolka et al. 2015). CoVisor is a hypervisor

that allows multiple controllers to run concurrently (sequential or parallel composition). It can incrementally

update the con�guration based on intercepted messages from controllers, and does not need to recompile the full

composed policy (Jin et al. 2015). �e PGA system addresses the issue of how to handle distributed con�icts,

via customizable constraints between di�erent portions of the policies, allowing them to be composed correctly

(Prakash et al. 2015). Bona�i et al. (2000) present an algebra for properly composing access-control policies.

Canini et al. (2013) use an approach based on so�ware transactional networking to handle con�icts. We deal

with con�icts automatically, by producing local event nets.
Handling persistent state properly in network programming is a di�cult problem. Although basic support is

provided by switch-level mechanisms for stateful behavior (Bianchi et al. 2014; Bosshart et al. 2014; Sivaraman

et al. 2016), global coordination still needs to be handled carefully at the language/compiler level. FAST (Moshref

et al. 2014), OpenState (Bianchi et al. 2014), and Kinetic (Kim et al. 2015) provide a �nite-state-machine-based

approach to stateful network programming. Arashloo et al. (2016) present SNAP, a high-level language for writing

network programs. SNAP has a language with support for sequential/parallel composition of stateful policies, as

well as built-in features beyond what we provide (such as atomic blocks). However, none of these approaches

examine how to avoid/handle (or even analyze) distributed con�icts. McClurg et al. (2016) present an approach

which formalizes event-driven network programs using event structures, and show how to deal with distributed

con�icts. We extend this to a �exible model which has a more natural notion of loops, while retaining the ability

to utilize the consistency properties presented there. We also present a synchronization synthesis framework

that helps users properly compose several such structures into a single correct network program.

Synthesis/Veri�cation of Concurrent Network Programs. Padon et al. (2015) show how to “decentralize” a network

program to work properly on distributed switches. Our work on the other hand takes an improperly-decentralized

program and inserts the necessary synchronization to make it correct. El-Hassany et al. (2016) present SDNracer, a

tool for discovering concurrency bugs in network programs. Our work instead seeks to repair a buggy concurrent

network program to make it satisfy a high-level correctness property. Yuan et al. (2015) present NetEgg, pioneering

the approach of using examples to write network programs. Similar to our event net repair engine, they produce

a policy compatible with a set of �nite traces. However, NetEgg does not support negative examples, limiting its

ability to rule out incorrect interleavings. Additionally, in contrast with our SMT-based strategy, NetEgg uses a

backtracking search which may limit its scalability when applied to large real-world networks.

Petri Net Synthesis. Ehrenfeucht and Rozenberg (1990) introduce the “net synthesis” problem, i.e., producing a

net whose state graph is isomorphic to a given DFA, and present the “regions” construction on which Petri net

synthesis algorithms are based. Desel and Reisig (1996) present an algorithm for synthesizing all nets isomorphic

to a given DFA, in order to �nd “small” ones. Cortadella et al. (1995) produce elementary nets, minimize the

number of places, and use label spli�ing when the region-based synthesis method fails. Badouel et al. (1997)

show that synthesizing elementary nets (essentially 1-safe Petri nets without self-loops) is NP-complete.

For general Petri nets, the synthesis problem is polynomial-time solvable. Badouel et al. (1995) present a

polynomial algorithm (based on linear programming) for pure (no self-loops) bounded nets. Badouel et al. (2002)

CAV, Vol. ?, No. ?, Article 77. Publication date: July 2017.

77:18 • Jedidiah McClurg, Hossein Hojjat, and Pavol Černý

present a polynomial-time linear-algebra-based algorithm for synthesizing distributable nets (Hopkins 1990).

Distributable nets are local like our event nets, but not necessarily 1-safe.

�e above work is not directly applicable in our context because the de�nition of “net synthesis” is very

di�erent than what is needed for our repair engine. A more closely-related type of synthesis is presented by

Bergenthum et al. (2008) and Cabasino et al. (2007), who synthesize minimal Petri nets consistent with positive

and positive/negative examples respectively. Our programming model relies on 1-safe Petri nets, so we cannot

directly apply these approaches either.

Process Mining. Process mining looks at an event log and produces an event structure which generalizes the

traces in the log (Dumas and Garcı́a-Bañuelos 2015). �is approach can also synthesize a Petri net—Ponce de

León et al. (2015) use the log to produce an event structure, and then generalize the event structure by “folding”

it into an equivalent bounded net via SMT, using negative traces to constrain the amount of generalization. �is

is di�erent than our approach in that (1) their generalization adds potentially more behaviors not seen in the

positive traces, meaning it would not work for synthesis of synchronization constructs, and (2) they have a strong

well-formedness assumption on negative examples, while we allow arbitrary traces.

A related area is process enhancement (repair) (Fahland and van der Aalst 2012). �is computes a minimal

number of changes to the original Petri net such that certain properties are satis�ed (such as agreement with the

event log). �ality metrics are used to maintain closeness to the original model, and the degree of conformance

with the event log. For example, Martı́nez-Araiza and López-Mellado (2015) use a backtracking algorithm that

modi�es the Petri net while checking a CTL property, producing a repaired Petri net which satis�es the property.

�is changes the semantics of the Petri net, while we want semantics-preserving transformations. In other

words, we do not generate arbitrary repairs—we restrict behaviors by adding new events/places (synchronization

skeletons). Basile et al. (2015) preserve the semantics of the original (buggy) Petri net, but they are restricted to

the context of time petri nets (they modify the timing, not the net structure). �ese do not correspond well to

network programs, because careful timing can require expensive synchronization/bu�ering in the network.

Automata Learning. Our approach is essentially an abstract learning framework (Löding et al. 2016), where our

event net repair engine is the learner. Automata learning is conceptually similar, producing a DFA instead of

a Petri net, and has been used for veri�cation/synthesis (Vardhan et al. 2004). O�ine approaches to automata

learning (such as RPNI (Oncina and Garcı́a 1992)) produce an automaton which agrees with a set of labeled

(positive/negative) example traces. Online approaches such as L∗ (Angluin 1987) actively pose queries to the

user asking whether certain traces are contained in the target language. For our purposes, an o�ine approach

is desirable, since we wish to provide a fully automatic tool. Learning a minimal DFA from positive/negative

examples is known to be an NP-complete problem (Gold 1978), but under various restrictions on the example

traces, a polynomial algorithm can be obtained (Dupont 1996; Dupont et al. 1994). It would be interesting to

investigate an RPNI-style formalization for learning Petri nets, although (1) in our case, we would need to modify
a given Petri net in a minimal way, such that a set of negative traces are rejected, rather than producing a general
Petri net from a set of positive/negative examples, and (2) it is possible that there is not an e�cient solution, due

to the NP-completeness of both DFA learning and elementary net synthesis. Additionally, it would be interesting

to examine the usefulness of an online approach for learning Petri nets (e.g. (Esparza et al. 2010)) in our context,

but both of these directions are le� for future work.

Synthesis/Repair for Synchronization. Emerson and Clarke (1982) use a decision procedure for satis�ability

of CTL to synthesize “synchronization skeletons.” �e processes themselves are speci�ed using CTL, and the

synchronization skeleton is extracted from the model. Cha�erjee et al. (2013) present complexity results for

distributed LTL synthesis, i.e., synthesizing a set of processes such that their behavior satis�es an LTL speci�cation.

Our approach is a similar idea, but we exploit the speed of SMT solvers on quanti�er-free linear integer arithmetic.

CAV, Vol. ?, No. ?, Article 77. Publication date: July 2017.

Synchronization Synthesis for Network Programs • 77:19

PSketch (Solar-Lezama et al. 2008) extends Sketch to synthesize concurrent programs. �ey add constructs for

statement reordering, as well as concurrency primitives for forking threads, atomic sections, etc. �e SAT-based

synthesis component produces a candidate program which avoids a �nite set of buggy traces, and a Spin veri�er

checks that all interleavings of the candidate are correct, and if not, a counterexample representing a new buggy

trace is returned. �is is conceptually similar to our approach, but PSketch encodes all possible programs as a

SAT formula, while we utilize the SMT solver to add a repair to the original program.

�ere are various other SAT/SMT-based approaches, such as synthesis of memory-order (Meshman et al.

2015) and insertion of fences (Kuperstein et al. 2010) in a relaxed memory model, instruction reordering (Černý

et al. 2013; Cerný et al. 2014), atomic section insertion (Bloem et al. 2014; Vechev et al. 2010), etc. Additionally,

there are program-analysis-based approaches which look at a bug report, and perform semantics-preserving

reorderings, thread join/lock, etc., producing a patch to �x the bug (Jin et al. 2011, 2012; Liu et al. 2016). Raychev

et al. (2013) present an approach to “determinize” a concurrent program by synthesizing order relationships

between statements. In our approach, we model programs as Petri nets, resulting in a general framework for

synthesis of synchronization where many di�erent types of synchronization constructs can be readily described

and synthesized.

Synthesis from Examples. Programming by examples is an active research area, and has been applied in many

contexts where individual behaviors are easier to specify than full programs (Gulwani 2011; Polozov and Gulwani

2015). Our approach uses a new example-based Petri repair engine to synthesize programs which respect certain

high-level properties.

Transit (Alur et al. 2015; Udupa et al. 2013) allows programmers to synthesize a distributed program (protocol)

using both concrete and symbolic partial examples of the program’s desired behavior (concolic snippets). �is

approach uses CEGIS—the synthesizer enumeratively “�lls in” program expressions, and uses an SMT solver

to check that the resulting candidate protocol agrees with the concolic examples (and invariants). If not, a

counterexample is provided as a new concrete example. Our approach is similar, except that rather than

enumeration, we use an SMT solver (guided by negative traces) to produce a candidate, and our candidates are

Petri nets rather than program expressions.

7 DISCUSSION AND FUTURE WORK
In this section, we brie�y describe some limitations of our approach, and suggest several interesting directions

for future research.

• In our algorithm, we do not acquire a counterexample for 1-safety or deadlock-freedom violations,

meaning that in these cases, we instruct the repair engine to assert a clause that prevents it from revisiting

the particular set of synchronization skeletons. Although this works well in our experiments, it could

potentially be problematic in situations where many such violations are encountered by the CEGIS loop,

since the SMT solver would build up a large set of assertions which do not “guide” the search as e�ectively

as an actual counterexample trace would. We plan to investigate ways to avoid such issues.

• In this paper, we consider single-packet properties, meaning we cannot precisely reason about behavior

arising from several di�erent interacting packets, such as a stateful �rewall. Future research is needed to

determine (1) what is the right formalism (such as LTL) for specifying multi-packet properties, and (2)

how the veri�er can e�ciently check such properties when events become “parameterized” over packets.

• Although di�erent from our intended use case, we may be able to use our approach as a solution to

the update synthesis problem, by modeling each switch/rule update as a two-place event net. Instead

of producing a total order on switch/rule updates (as in (McClurg et al. 2015)), we could essentially

synthesize a partial order, by inserting only the synchronization skeletons needed to avoid violations of

the LTL property. Investigating the usability of our synthesizer in this context is le� for future work.

CAV, Vol. ?, No. ?, Article 77. Publication date: July 2017.

77:20 • Jedidiah McClurg, Hossein Hojjat, and Pavol Černý

• As seen in the experiments, the veri�cation component is the most expensive piece of the system. We

expect that this can be mitigated by improving the integration between the repair engine and the veri�er,

e.g., by taking advantage of the incremental capabilities of the SMT solver, and building a veri�er that is

incremental in the sense that it only re-checks the parts of the event net that changed since the last check.

• It would be interesting to investigate the e�ciency of our synchronization synthesis approach if the

repair engine were allowed to add arbitrary sets of places, transitions, and edges, rather than choosing

from our limited (yet customizable) set of synchronization skeletons, but this is le� for future work.

• We are interested in determining whether there is a clean RPNI-like algorithm specialized to event

nets, although we expect that such an algorithm would have a high theoretical complexity, making it

impractical in the context of a CEGIS algorithm like the one described in this paper.

8 CONCLUSION
We have presented an approach for synthesis of synchronization to produce network programs which satisfy

correctness properties. We allow the network programmer to specify a network program as a set of concur-

rent behaviors, in addition to high-level temporal correctness properties, and our tool inserts synchronization

constructs necessary to remove unwanted interleavings. �e advantages over previous work are that (a) we

provide a language which leverages Petri nets’ natural support for concurrency, and (b) we provide an e�cient

counterexample-guided algorithm for synthesizing synchronization for programs in this language.

REFERENCES
Rajeev Alur, Mukund Raghothaman, Christos Stergiou, Stavros Tripakis, and Abhishek Udupa. 2015. Automatic Completion of Distributed

Protocols with Symmetry. CAV (2015).

Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean-Baptiste Jeannin, Dexter Kozen, Cole Schlesinger, and David Walker. 2014. NetKAT:

Semantic Foundations for Networks. POPL (2014).

D. Angluin. 1987. Learning Regular Sets from �eries and Counterexamples. Inf. Comput. 75, 2 (1987), 87–106.

Mina Tahmasbi Arashloo, Yaron Koral, Michael Greenberg, Jennifer Rexford, and David Walker. 2016. SNAP: Stateful Network-Wide

Abstractions for Packet Processing. SIGCOMM (2016).

Eric Badouel, Luca Bernardinello, and Philippe Darondeau. 1995. Polynomial Algorithms for the Synthesis of Bounded Nets. In TAPSOFT
(Lecture Notes in Computer Science), Vol. 915. Springer, 364–378.

Eric Badouel, Luca Bernardinello, and Philippe Darondeau. 1997. �e Synthesis Problem for Elementary Net Systems is NP-Complete. �eor.
Comput. Sci. 186, 1-2 (1997), 107–134.

Eric Badouel, Benoı̂t Caillaud, and Philippe Darondeau. 2002. Distributing Finite Automata �rough Petri Net Synthesis. Formal Asp. Comput.
13, 6 (2002), 447–470.

F. Basile, P. Chiacchio, and J. Coppola. 2015. Model repair of Time Petri Nets with temporal anomalies. IFAC-PapersOnLine 48, 7 (2015), 85 –

90. 5th {IFAC} International Workshop on Dependable Control of Discrete SystemsDCDS 2015.

Robin Bergenthum, Jörg Desel, Robert Lorenz, and Sebastian Mauser. 2008. Synthesis of Petri Nets from Finite Partial Languages. Fundam.
Inform. 88, 4 (2008), 437–468.

Giuseppe Bianchi, Marco Bonola, Antonio Capone, and Carmelo Cascone. 2014. OpenState: Programming Platform-independent Stateful

Open�ow Applications Inside the Switch. ACM SIGCOMM CCR (2014).

Roderick Bloem, Georg Ho�erek, Be�ina Könighofer, Robert Könighofer, Simon Ausserlechner, and Raphael Spork. 2014. Synthesis of

synchronization using uninterpreted functions. In FMCAD. IEEE, 35–42.

Piero A. Bona�i, Sabrina De Capitani di Vimercati, and Pierangela Samarati. 2000. A modular approach to composing access control policies.

In ACM Conference on Computer and Communications Security. ACM, 164–173.

Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George

Varghese, and others. 2014. P4: Programming Protocol-independent Packet Processors. ACM SIGCOMM CCR (2014).

Maria Paola Cabasino, Alessandro Giua, and Carla Seatzu. 2007. Identi�cation of Petri Nets from Knowledge of �eir Language. Discrete
Event Dynamic Systems 17, 4 (2007), 447–474.

Marco Canini, Petr Kuznetsov, Dan Levin, and Stefan Schmid. 2013. So�ware transactional networking: concurrent and consistent policy

composition. In HotSDN. ACM, 1–6.

Pavol Černý, �omas A Henzinger, Arjun Radhakrishna, Leonid Ryzhyk, and �orsten Tarrach. 2013. E�cient Synthesis for Concurrency by

Semantics-preserving Transformations. CAV (2013).

CAV, Vol. ?, No. ?, Article 77. Publication date: July 2017.

Synchronization Synthesis for Network Programs • 77:21

Pavol Cerný, �omas A. Henzinger, Arjun Radhakrishna, Leonid Ryzhyk, and �orsten Tarrach. 2014. Regression-Free Synthesis for

Concurrency. In CAV (Lecture Notes in Computer Science), Vol. 8559. Springer, 568–584.

Krishnendu Cha�erjee, �omas A Henzinger, Jan Otop, and Andreas Pavlogiannis. 2013. Distributed Synthesis for LTL Fragments. In Formal
Methods in Computer-Aided Design (FMCAD), 2013. IEEE, 18–25.

Jordi Cortadella, Michael Kishinevsky, Luciano Lavagno, and Alexandre Yakovlev. 1995. Synthesizing Petri nets from state-based models. In

ICCAD. IEEE Computer Society / ACM, 164–171.

Jörg Desel and Wolfgang Reisig. 1996. �e Synthesis Problem of Petri Nets. Acta Inf. 33, 4 (1996), 297–315.

Advait Abhay Dixit, Fang Hao, Sarit Mukherjee, T.V. Lakshman, and Ramana Kompella. 2014. ElastiCon: An Elastic Distributed Sdn Controller.

In ANCS. 12.

Szymon Dudycz, Arne Ludwig, and Stefan Schmid. 2016. Can’t Touch �is: Consistent Network Updates for Multiple Policies. In DSN. IEEE

Computer Society, 133–143.

Marlon Dumas and Luciano Garcı́a-Bañuelos. 2015. Process Mining Reloaded: Event Structures as a Uni�ed Representation of Process Models

and Event Logs. In Petri Nets (Lecture Notes in Computer Science), Vol. 9115. Springer, 33–48.

Pierre Dupont. 1996. Incremental Regular Inference. In Grammatical Interference: Learning Syntax from Sentences. Springer, 222–237.

Pierre Dupont, Laurent Miclet, and Enrique Vidal. 1994. What is the search space of the regular inference? In Grammatical Inference and
Applications. Springer, 25–37.

Andrzej Ehrenfeucht and Grzegorz Rozenberg. 1990. Partial (Set) 2-Structures. Part II: State Spaces of Concurrent Systems. Acta Inf. 27, 4

(1990), 343–368.

Ahmed El-Hassany, Jeremie Miserez, Pavol Bielik, Laurent Vanbever, and Martin T. Vechev. 2016. SDNRacer: concurrency analysis for

so�ware-de�ned networks. In PLDI. ACM, 402–415.

E. Allen Emerson and Edmund M. Clarke. 1982. Using Branching Time Temporal Logic to Synthesize Synchronization Skeletons. Sci. Comput.
Program. 2, 3 (1982), 241–266.

Javier Esparza, Martin Leucker, and Maximilian Schlund. 2010. Learning Work�ow Petri Nets. In Petri Nets (Lecture Notes in Computer Science),
Vol. 6128. Springer, 206–225.

Dirk Fahland and Wil M. P. van der Aalst. 2012. Repairing Process Models to Re�ect Reality. In BPM (Lecture Notes in Computer Science),
Vol. 7481. Springer, 229–245.

E. Mark Gold. 1978. Complexity of Automaton Identi�cation from Given Data. Information and Control 37, 3 (1978), 302–320.

Sumit Gulwani. 2011. Automating String Processing in Spreadsheets Using Input-Output Examples. POPL (2011).

Sumit Gulwani, Susmit Jha, Ashish Tiwari, and Ramarathnam Venkatesan. 2011. Synthesis of Loop-free Programs. PLDI (2011).

Hossein Hojjat, Philipp Ruemmer, Jedidiah McClurg, Pavol Cerny, and Nate Foster. 2016. Optimizing Horn Solvers for Network Repair.

FMCAD (2016).

Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming Zhang, Vijay Gill, Mohan Nanduri, and Roger Wa�enhofer. 2013. Achieving High

Utilization with So�ware-driven WAN. SIGCOMM (2013).

Richard P. Hopkins. 1990. Distributable nets. In Applications and �eory of Petri Nets (Lecture Notes in Computer Science), Vol. 524. Springer,

161–187.

Susmit Jha, Sumit Gulwani, Sanjit Seshia, Ashish Tiwari, and others. 2010. Oracle-guided Component-based Program Synthesis. ICSE (2010).

Guoliang Jin, Linhai Song, Wei Zhang, Shan Lu, and Ben Liblit. 2011. Automated atomicity-violation �xing. In PLDI. ACM, 389–400.

Guoliang Jin, Wei Zhang, and Dongdong Deng. 2012. Automated Concurrency-Bug Fixing. In OSDI. USENIX Association, 221–236.

Xin Jin, Jennifer Gossels, Jennifer Rexford, and David Walker. 2015. CoVisor: A Compositional Hypervisor for So�ware-De�ned Networks.

NSDI (2015).

Xin Jin, Hongqiang Harry Liu, Rohan Gandhi, Srikanth Kandula, Ratul Mahajan, Ming Zhang, Jennifer Rexford, and Roger Wa�enhofer. 2014.

Dynamic Scheduling of Network Updates. SIGCOMM (2014).

Naga Praveen Ka�a, Jennifer Rexford, and David Walker. 2013. Incremental Consistent Updates. In HotSDN. ACM, 49–54.

Hyojoon Kim, Joshua Reich, Arpit Gupta, Muhammad Shahbaz, Nick Feamster, and Russ Clark. 2015. Kinetic: Veri�able Dynamic Network

Control. NSDI (2015).

Teemu Koponen, Keith Amidon, Peter Balland, Martı́n Casado, Anupam Chanda, Bryan Fulton, Igor Ganichev, Jesse Gross, Natasha Gude,

Paul Ingram, and others. 2014. Network Virtualization in Multi-tenant Datacenters. NSDI (2014).

Teemu Koponen, Martı́n Casado, Natasha Gude, Jeremy Stribling, Leon Poutievski, Min Zhu, Rajiv Ramanathan, Yuichiro Iwata, Hiroaki

Inoue, Takayuki Hama, and Sco� Shenker. 2010. Onix: A Distributed Control Platform for Large-scale Production Networks. In OSDI.
USENIX Association, 351–364.

Michael Kuperstein, Martin T. Vechev, and Eran Yahav. 2010. Automatic inference of memory fences. In FMCAD. IEEE, 111–119.

Haopeng Liu, Yuxi Chen, and Shan Lu. 2016. Understanding and generating high quality patches for concurrency bugs. In SIGSOFT FSE.

ACM, 715–726.

Weijie Liu, Rakesh B Bobba, Sibin Mohan, and Roy H Campbell. 2015. Inter-Flow Consistency: Novel SDN Update Abstraction for Supporting

Inter-Flow Constraints. NDSS (2015).

CAV, Vol. ?, No. ?, Article 77. Publication date: July 2017.

77:22 • Jedidiah McClurg, Hossein Hojjat, and Pavol Černý

Christof Löding, P. Madhusudan, and Daniel Neider. 2016. Abstract Learning Frameworks for Synthesis. In TACAS (Lecture Notes in Computer
Science), Vol. 9636. Springer, 167–185.

A. Ludwig, M. Rost, D. Foucard, and S. Schmid. 2014. Good Network Updates for Bad Packets: Waypoint Enforcement Beyond Destination-

Based Routing Policies. In HotNets.
Ratul Mahajan and Roger Wa�enhofer. 2013. On Consistent Updates in So�ware De�ned Networks. In SIGCOMM.

Ulises Martı́nez-Araiza and Ernesto López-Mellado. 2015. {CTL}Model Repair for Bounded and Deadlock Free Petri Nets. IFAC-PapersOnLine
48, 7 (2015), 154 – 160. 5th {IFAC} International Workshop on Dependable Control of Discrete SystemsDCDS 2015.

Jedidiah McClurg, Hossein Hojjat, Pavol Cerny, and Nate Foster. 2015. E�cient Synthesis of Network Updates. PLDI (2015).

Jedidiah McClurg, Hossein Hojjat, Nate Foster, and Pavol Cerny. 2016. Event-driven Network Programming. h�p://arxiv.org/abs/1507.07049,

PLDI (2016).

Yuri Meshman, Noam Rinetzky, and Eran Yahav. 2015. Pa�ern-based Synthesis of Synchronization for the C++ Memory Model. In FMCAD.

IEEE, 120–127.

Christopher Monsanto, Joshua Reich, Nate Foster, Jennifer Rexford, and David Walker. 2013. Composing So�ware De�ned Networks. NSDI
(2013).

Masoud Moshref, Apoorv Bhargava, Adhip Gupta, Minlan Yu, and Ramesh Govindan. 2014. Flow-level State Transition as a New Switch

Primitive for SDN. In HotSDN.

José Oncina and Pedro Garcı́a. 1992. Identifying Regular Languages in Polynomial Time. Advances in Structural and Syntactic Pa�ern
Recognition (1992).

Oded Padon, Neil Immerman, Aleksandr Karbyshev, Ori Lahav, Mooly Sagiv, and Sharon Shoham. 2015. Decentralizing SDN Policies. POPL
(2015).

Peter Peresı́ni, Maciej Kuzniar, Nedeljko Vasic, Marco Canini, and Dejan Kostic. 2013. OF.CPP: consistent packet processing for open�ow. In

HotSDN. ACM, 97–102.

Oleksandr Polozov and Sumit Gulwani. 2015. FlashMeta: A Framework for Inductive Program Synthesis. OOPSLA (2015).

Hernán Ponce de León, César Rodrı́guez, Josep Carmona, Keijo Heljanko, and Stefan Haar. 2015. Unfolding-Based Process Discovery. In

ATVA (Lecture Notes in Computer Science), Vol. 9364. Springer, 31–47.

Chaithan Prakash, Jeongkeun Lee, Yoshio Turner, Joon-Myung Kang, Aditya Akella, Sujata Banerjee, Charles Clark, Yadi Ma, Puneet Sharma,

and Ying Zhang. 2015. PGA: Using Graphs to Express and Automatically Reconcile Network Policies. In SIGCOMM. ACM, 29–42.

Veselin Raychev, Martin T. Vechev, and Eran Yahav. 2013. Automatic Synthesis of Deterministic Concurrency. In SAS (Lecture Notes in
Computer Science), Vol. 7935. Springer, 283–303.

Mark Reitbla�, Nate Foster, Jennifer Rexford, Cole Schlesinger, and David Walker. 2012. Abstractions for Network Update. SIGCOMM (2012).

Shambwaditya Saha, Santhosh Prabhu, and P. Madhusudan. 2015. NetGen: synthesizing data-plane con�gurations for network policies. In

SOSR. ACM, 17:1–17:6.

Colin Sco�, Andreas Wundsam, Barath Raghavan, Aurojit Panda, Andrew Or, Je�erson Lai, Eugene Huang, Zhi Liu, Ahmed El-Hassany,

Sam Whitlock, Hrishikesh B. Acharya, Kyriakos Zari�s, and Sco� Shenker. 2014. Troubleshooting blackbox SDN control so�ware with

minimal causal sequences. In SIGCOMM. ACM, 395–406.

Anirudh Sivaraman, Alvin Cheung, Mihai Budiu, Changhoon Kim, Mohammad Alizadeh, Hari Balakrishnan, George Varghese, Nick McKeown,

and Steve Licking. 2016. Packet Transactions: High-Level Programming for Line-Rate Switches. SIGCOMM (2016).

Ste�en Smolka, Spiridon Eliopoulos, Nate Foster, and Arjun Guha. 2015. A Fast Compiler for NetKAT. ICFP (2015).

Armando Solar-Lezama, Christopher Grant Jones, and Rastislav Bodı́k. 2008. Sketching concurrent data structures. In PLDI. ACM.

Abhishek Udupa, Arun Raghavan, Jyotirmoy V Deshmukh, Sela Mador-Haim, Milo MK Martin, and Rajeev Alur. 2013. Transit: Specifying

Protocols with Concolic Snippets. PLDI (2013).

Abhay Vardhan, Koushik Sen, Mahesh Viswanathan, and Gul Agha. 2004. Learning to Verify Safety Properties. In ICFEM (Lecture Notes in
Computer Science), Vol. 3308. Springer, 274–289.

Martin Vechev, Eran Yahav, and Greta Yorsh. 2010. Abstraction-guided Synthesis of Synchronization. POPL (2010).

Glynn Winskel. 1987. Event Structures. Springer.

Yifei Yuan, Dong Lin, Rajeev Alur, and Boon �au Loo. 2015. Scenario-based Programming for SDN Policies. CoNEXT (2015).

Wenxuan Zhou, Dong Jin, Jason Cro�, Ma�hew Caesar, and P. Brighten Godfrey. 2015. Enforcing Generalized Consistency Properties in

So�ware-De�ned Networks. NSDI (2015).

CAV, Vol. ?, No. ?, Article 77. Publication date: July 2017.

http://arxiv.org/abs/1507.07049

	Abstract
	1 Introduction
	2 Network Programming using Event Nets
	3 Synchronization Synthesis for Event Nets
	4 Fixing and Checking Synchronization in Event Nets
	4.1 Repairing Event Nets Using Counterexample Traces
	4.2 Checking Event Nets
	4.3 Overall Correctness Results

	5 Implementation and Evaluation
	6 Related Work
	7 Discussion and Future Work
	8 Conclusion
	References

