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Abstract. In software-defined networking (SDN), a controller program
updates the forwarding rules of a network in response to events. Such
programs are often physically distributed, running on different nodes of
the network. Their distributed nature makes these programs difficult to
write and debug. Furthermore, bugs in these programs can lead to seri-
ous problems such as packet loss and security violations. In this paper,
we propose a program synthesis approach that makes it easier to write
distributed controller programs. The programmer can specify each se-
quential process, and add a declarative specification of paths that packets
are allowed to take. The synthesizer then inserts enough synchronization
between the distributed controller processes such that the declarative
specification is satisfied by all packets that traverse the network. Our
key technical contribution is a counterexample-guided synthesis algo-
rithm that adds synchronization between controller processes to prevent
races that would cause a specification violation. Our programming model
is based on Petri nets, and generalizes several models from the network-
ing literature. Importantly, our programs can be implemented in a way
that prevents races between updates to individual switches and in-flight
packets. To our knowledge, this is the first counterexample-guided tech-
nique that automatically adds synchronization constructs to Petri-net
based programs. We demonstrate that our prototype implementation
can fix realistic concurrency bugs described previously in the literature,
and that our tool can handle real network topologies.

1 Introduction

Software-defined networking (SDN) enables programmers to more easily imple-
ment important applications such as traffic engineering, distributed firewalls,
and network virtualization. These applications react to network events—such as
topology changes, shifts in traffic load, or arrival of packets at switches. SDN
provides the abstraction of a controller machine that manages forwarding rules
installed on individual switches. The application programmer can write code
which runs on the controller, enabling custom event-driven behavior.

Concurrency in Network Programs. Network control is often physically dis-
tributed, with controller processes running on multiple network nodes [28, 14].
The fact that these distributed programs control a network which is itself a dis-
tributed packet-forwarding system means that these programs can be especially
difficult to write and debug. In particular, there are two types of races that can
occur, resulting in incorrect behavior. First, there are races between updates of
forwarding rules at individual nodes, or between packets that are in-flight during
updates. Second, there are races among the different processes of the distributed
controller. We call races of the first type packet races, and races of the second
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type controller races. Bugs resulting from these types of races can lead to serious
problems such as packet loss and security violations.

Illustrative Example. Let us examine the difficulties of writing distributed con-
troller programs, in regards to the two types of races. Consider the network topol-
ogy in Figure 1(a). In the initial configuration, packets entering at H1 are for-
warded through S1, S5, S2 to H2. There are two controllers (not shown), C1 and
C2—controller C1 manages the upper part of the network H1, S1, S5, S3, H3,
and C2 manages H2, S2, S5, S4, H4. Now imagine that the network operator
wants to take down the forwarding rules that send packets from H1 to H2, and
instead install rules to forward packets from H3 to H4. Furthermore, the opera-
tor wants to ensure that the following property P holds: all packets entering the
network through H1 must exit at H2. When developing the program to do this,
the network operator must keep the following problems in mind:

– Packet race: If C1 removes the rule that forwards from S1 to S5 before
removing the rule at H1, then a packet entering at H1 will be dropped at
S1, violating specification P .

– Controller race: Suppose C1 only removes the rule that forwards from S3 to
S5, and suppose C2 adds rules that forward from S5 to S4, and from S4 to
H4. Then a packet entering at H1 will exit at H4, violating specification P .

Goal. We present a program synthesis approach that makes it easier to write
distributed controller programs. The programmer can specify each sequential
process, and add a declarative specification of paths that packets are allowed
to take. The synthesizer then inserts enough synchronization between the con-
troller processes such that the declarative specification is satisfied by all packets
traversing the network. In effect, our approach allows the programmer to reduce
the amount of effort spent on keeping track of possible interleavings of controller
processes and inserting low-level synchronization constructs, and instead focus
on writing a declarative specification which describes allowed packet paths. In
the examples we considered, we found these declarative specifications to be a
clear and easy way to write the desired correctness properties.

Network Programming Model. In our approach, similar to network programming
languages like Kinetic [26] and OpenState [6], we allow a network program to be
described as a set of concurrently-operating finite state machines (FSMs) con-
sisting of event-driven transitions between global network states. We generalize
this by allowing the input network program to be a set of event nets, which
are 1-safe Petri nets where each transition corresponds to a network event, and
each place corresponds to a set of forwarding rules. This model extends network
event structures [33] to enable modeling programs with loops. An advantage
of extending this particular programming model is that its programs can be
efficiently implemented without packet races (discussed further in Section 3).

Problem Statement. Our synthesizer has two inputs: (1) a set of event nets that
represents sequential processes of the distributed controller, and (2) an LTL
specification of paths that packets are allowed to take. For example, the network
programmer can specify properties such as “packets from H1 should always pass



Synchronization Synthesis for Network Programs 3

through Middlebox S5 before exiting the network.” The output is an event net
consisting of the input event nets with added synchronization constructs, such
that all packets traversing the network satisfy the LTL specification. The added
synchronization eliminates problems caused by controller races. Since we use
event nets, which can be implemented without packet races, both types of races
are eliminated in the final implementation of the distributed controller.

Algorithm. Our main contribution is a counterexample-guided inductive syn-
thesis (CEGIS) algorithm for event nets. This consists of (1) repair engine that
synthesizes a candidate event net from the input event nets and a set of coun-
terexample traces, and (2) a verifier that checks whether the candidate satisfies
the LTL property, producing a counterexample trace if not. The repair engine
uses SMT to produce a candidate event net by adding synchronization constructs
which ensure that it does not contain the counterexample traces discovered so
far. Repairs are chosen from a variety of constructs (barriers, locks, condition
variables), and other constructs can be added as needed. Given an event net, the
verifier checks whether it is deadlock-free (i.e., there is an execution where all
processes can proceed without deadlock), and whether it satisfies the LTL prop-
erty. We encode this as an LTL model-checking problem—the check fails (and
returns a counterexample) if the event net exhibits an incorrect interleaving.

Evaluation. We have implemented our techniques, and evaluated our tool on
examples from the SDN literature. We show that our prototype implementation
can fix realistic concurrency bugs, and can handle real network topologies.

Contributions. This paper contains the following contributions:
– We describe event nets, a new model for representing concurrent network

programs, which extends several previous approaches, enables using and
reasoning about many synchronization constructs, and admits an efficient
distributed implementation (Section 2-3).

– We present synchronization synthesis for event nets. To our knowledge, this
is the first counterexample-guided technique that automatically adds syn-
chronization constructs to Petri-net based programs. Our solution includes
a model checker for event nets, and an SMT-based repair engine for event
nets which can insert a variety of synchronization constructs (Section 4).

– We demonstrate the usefulness and efficiency of our approach through several
real-world examples (Section 5).

2 Network Programming using Event Nets

Network programs change global forwarding behavior of the network in response
to events. Recently proposed network programming languages such as Open-
State [6] and Kinetic [26] allow a network program to be specified as a set of
finite state machines, where each state is a static configuration (i.e., a set of
forwarding rules at switches), and the transitions are driven by events in the
network (packet arrivals, etc.). In this case, support for concurrency is enabled
by allowing FSMs to execute in parallel, and any conflicts of the global forward-
ing state due to concurrency are avoided by either requiring the FSMs to be
restricted to disjoint types of traffic, or by ignoring conflicts entirely. Neither
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(a) Configurations (b) Input Net (c) Iteration 1 (d) Output Net

Fig. 1: Example #1

of these options solves the problem—as we will see here (and in the Evalua-
tion), serious bugs can arise due to unexpected interleavings. Overall, network
programming languages typically do not have strong support for handling (and
reasoning about) concurrency, and this is becoming especially necessary, as SDNs
are moving to distributed or multithreaded controllers.

Event Nets for Network Programming. We introduce a new approach which ex-
tends the finite-state view of network programming with support for concurrency
and synchronization. Our model is called event nets, an extension of 1-safe Petri
nets, a well-studied framework for concurrency. An event net is a set of places
(denoted as circles) which are connected via directed edges to events (denoted
as squares). The current state of the program is indicated by a marking which
assigns tokens to places, and an event can change the current marking by con-
suming a token from each of its input places and emitting a token to each of its
output places. Since event nets model network programs, each place is labeled
with a static network configuration, and at any time, the global configuration is
taken as the union of the configurations at the marked places.

Figure 1(b) shows an example event net. In this paper, we will use integer
IDs (and alternatively, colors) to distinguish static configurations. Figure 1(a)
shows the network topology corresponding to this example. In a given topology,
the configurations associated with the event net are drawn in the color of the
places which contain them, and also labeled with the corresponding place IDs.
For example, place 3 in Figure 1(b) is orange, and this corresponds to enabling
forwarding along the orange path H3, S3, S5 (labeled with “3”) in the topology
(Figure 1(a)). In the initial state of this event net, places 1, 4 contain a token,
meaning forwarding is initially enabled along the red (1) and green (4) paths.

Event Nets and Synchronization. Event nets allow us to specify synchronization
easily. In Figure 1(b), we have added places 7, 8—this makes event C unable to
fire initially (since it does not have a token on input place 8), forcing it to wait
until event B fires (B consumes a token from places 2, 7 and emits a token at
8). Ultimately, we will show how these types of synchronization skeletons can be
produced automatically. In Figure 1(b)-(d), the original event net is shown in
black (solid lines), and synchronization produced by our tool is shown in blue
(dashed lines). We will now demonstrate by example how our tools works.

Example—Tenant Isolation in a Datacenter. Koponen et al. [27] describe an ap-
proach for providing virtual networks to tenants (users) of a datacenter, allowing
them to connect VMs using virtualized networking functionality (middleboxes,
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etc.). An important aspect of this is ensuring isolation between tenants. One
tenant intercepting another tenant’s traffic would be a severe security violation.

Let us extend the simple example described in the Introduction. In Figure
1(a), S5 is a physical device initially being used as a virtual middlebox processing
Tenant X’s traffic, which is being sent along the red (1) and green (4) paths.
We wish to perform an update in the datacenter which allows Tenant Y to use
S5, and moves the processing of Tenant X’s traffic to a different physical device.
Let us assume that for efficiency, two controllers will be used to execute this
update—path 1 is taken down and path 3 is brought up by C1, and path 4 is
taken down and path 6 is brought up by C2. The event net for this network
program is shown in Figure 1(b). The combinations of configurations 1, 6 and
4, 3 both allow traffic to flow between tenants, violating isolation.

We formalize the isolation specification using the following two properties:

1. φ1: no packet originating at H1 should arrive at H4, and
2. φ2: no packet originating at H3 should arrive at H2.

Properties like these which describe single-packet traces can be encoded straight-
forwardly in linear temporal logic (LTL). Note that instead of LTL, we can use
the more user-friendly PDL, or a domain-specific specification language that can
be compiled to LTL. Given an LTL specification, we ask a verifier whether the
event net has any reachable marking whose configuration violates the specifica-
tion. If so, a counterexample trace is provided, i.e., a sequence of events (starting
from the initial state) which allows the violation. For example, using the speci-
fication φ1 ∧ φ2 and the Figure 1(b) event net, our verifier informs us that the
sequence of events C,D leads to a property violation—in particular, when the
tokens are at 6, 1, traffic is allowed along the path H1, S1, S5, S4, H4, violating
φ1. Next, we ask a repair engine to suggest a fix for the event net which disal-
lows the trace C,D, and in this case, our tool produces 1(c). Again, we call the
verifier, which now gives us the counterexample trace A,B (when the tokens are
at 4, 3, traffic is allowed along the path H3, S3, S5, S2, H2, violating property
φ2). When we ask the repair engine to produce a fix which avoids both traces
C,D and A,B, we obtain the event net shown in 1(d). A final call to the verifier
confirms that this event net satisfies both properties.

The synchronization skeleton produced in Figure 1(d) functions as a barrier—
it prevents tokens from arriving at 6 or 3 until both tokens have moved from 4, 1.
This ensures that 1, 4 must both be taken down before bringing up paths 3, 6.

3 Synchronization Synthesis for Event Nets

Before describing our synthesis algorithm in detail, we first need to formally
define the concepts/terminology mentioned so far.

SDN Preliminaries. A packet pkt is a record of fields {f1; f2; · · · ; fn}, where
fields f represent properties such as source and destination address, protocol
type, etc. The (numeric) values of fields are accessed via the notation pkt .f , and
field updates are denoted pkt [f ← n]. A switch sw is a node in the network
with one or more ports pt . A host is a switch that can be a source or a sink of
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packets. A location l is a switch-port pair n:m. Locations may be connected by
(bidirectional) physical links (l1, l2).

A located packet lp = (pkt , sw , pt) is a tuple consisting of a packet and a
location sw :pt . A packet-trace h is a non-empty sequence of located packets.
Packet forwarding is dictated by a network configuration C. We model C as
a relation on located packets: if C(lp, lp′), then the network maps lp to lp′,
possibly changing its location and rewriting some of its fields. Since C is a
relation, it allows multiple output packets to be generated from a single input.
In a real network, the configuration only forwards packets between ports within
each individual switch, but for convenience, we assume that our C also captures
link behavior (forwarding between switches), i.e. C((pkt , n1,m1), (pkt , n2,m2))
and C((pkt , n2,m2), (pkt , n1,m1)) hold for each link (n1:m1, n2:m2). We say
that a packet-trace h = l0l1l2 · · · ln is allowed by configuration C if and only if
∀1 ≤ k ≤ n : C(lk−1, lk), and we denote this as h ∈ C.

Petri Net Preliminaries. Our treatment of Petri nets closely follows that of
Winskel [46] (Chapter 3). A Petri net is a tuple (P, T, F,M0), where P is a
set of places, T is a set of transitions, F ⊆ (P × T ) ∪ (T × P ) is a set of
edges, and M0 is multiset of places denoting the initial marking. We require that
P 6= ∅, and ∀x ∈ P : M0(x) > 0 ∨ (∃t ∈ T : (x, t) ∈ F ∨ (t, x) ∈ F ), and
∀t ∈ T : ∃x, y ∈ P : (x, t) ∈ F ∧ (t, y) ∈ F . Given a transition t, we define its
pre- and post-places as t• = {x ∈ P : (t, x) ∈ F} and •t = {x ∈ P : (x, t) ∈ F}
respectively. This can be extended to T ′• and •T ′, where T ′ ⊆ T .

A marking indicates the number of tokens at each place. We say that a
transition t ∈ T is enabled by a marking M (denoted t ⊆ M) if and only if
∀x ∈ P : (x, t) ∈ F =⇒ M(x) > 0. A marking Mi can transition into

another marking Mi+1 as dictated by the firing rule: Mi
T ′

−→ Mi+1 ⇐⇒ T ′ ⊆
Mi ∧Mi+1 = Mi − •T ′ + T ′•. The state graph of a Petri net is a graph where

each node is a marking (the initial node is M0), and an edge (Mi
t−→ Mj) is in

the graph if and only if Mi
{t}−−→ Mj in the Petri net. A trace τ of a Petri net is

a sequence t0t1 · · · tn starting from the initial node and such that (ti, ti+1) ∈ F ,
for all i < n. We define markings(t0t1 · · · tn) to be the sequence M0M1 · · ·Mn+1,

where M0
{t0}−−−→M1

{t1}−−−→ · · · {tn}−−−→Mn+1 in the Petri net. We can project a trace
onto a Petri net (denoted τ BN) by removing any transitions in τ which are not
in N . A 1-safe Petri net is a Petri net in which for any marking Mj reachable
from the initial marking M0, we have ∀x ∈ P : 0 ≤Mj(x) ≤ 1.

Event Nets. An event net E is a pair (P, λ), where P is a 1-safe Petri net, and λ
labels each place with a network configuration, and each transition with an event.
An event is a tuple (ψ, l), where l is a location, and ψ can be any predicate over
network state, packet locations, etc. For instance, in [33], an event encodes an
arrival of a packet with a header matching a given predicate to a given location.

Semantics of Event Nets. Given event net marking M , we denote the global
configuration of the network C(M), given as C(M) =

⋃
y∈M λ(y). Given event

net E = (P, λ), let T (E) be its set of traces. T (E) is defined as a set of traces of P .
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Given trace τ of an event net, we use configs(τ) to denote
⋃
M∈markings(τ) C(M),

i.e., the set of global configurations reachable along that trace. Given event net E,
we define pktTraces(E) to be the set {h : ∃τ ∈ T (E) : ∃C ∈ configs(τ) : h ∈ C}.
The set pktTraces(E) is the set of packet traces allowed by E. Note that in this
definition, the labeling of transitions by λ does not play a role. We could define
a more precise semantics by allowing transitions to execute only if the event
occurred (as in [33]), but here we choose the overapproximate semantics in order
to be independent of the exact types of events and event occurrences.

Implementability of Event Nets. We define local event net to be an event net in
which for any two events e1 = (ψ1, l1) and e2 = (ψ2, l2), we have (•e1 ∩ •e2 6=
∅)⇒ (l1=l2), i.e., any two events sharing a common input place must be handled
at the same location. McClurg et al. [33] present an approach for implementing a
network program encoded as an event structure, under certain locality conditions
similar to the one above. We can extend their construction to our local event
nets using the correspondence between Petri nets and event structures presented
in [46], which gives us Theorem 1:

Theorem 1 (Implementability). Each local event net E has a distributed
implementation whose single-packet traces are a subset of pktTraces(E).

The theorem follows from Theorem 1 in [33]. Intuitively, it implies that there are
no packet races in the implementation, since the theorem says that each packet
is processed by a trace in one of the reachable configurations. In other words, a
packet is never processed in a mix of configurations.

Packet-Trace Specifications. Beyond simply freedom from packet races, we wish
to rule out controller races, i.e., unwanted interleavings of concurrent events in an
event net. In particular, we use LTL to specify formulas that should be satisfied
by each packet-trace possible in each global configuration. The LTL formulas are
over a single packet pkt , with special field pkt .loc denoting the packet’s current
location. For example, we can use the property (pkt .loc=H1 ∧ pkt .dst=H2 =⇒
Fpkt .loc=H2) to mean that any packet located at Host 1 destined for Host 2
will eventually reach Host 2. Given a trace τ of an event net, we use the notation
τ |= ϕ to mean that ϕ holds in each global configuration C ∈ configs(τ).

Deadlock Freedom and 1-Safety. The input to our algorithm is a set of disjoint
event nets, which we call processes, and we can use simple graph union to repre-
sent this as a single event net E =

⊔
{E1, E2, · · · , En}. We want to avoid adding

synchronization which fully deadlocks any process Ei. Let E′ be an event net
containing processes E1, E2, · · · , En, and let Pi, Ti be the places and transitions
of each Ei. We say that E′ is deadlock-free if and only if there exists a trace
τ ∈ E′ such that ∀0 ≤ i ≤ n,Mj ∈ markings(τ), t ∈ Ti : ((•t ∩ Pi) ⊆ Mj) ⇒
(∃Mk ∈ markings(τ) : k ≥ j∧(t•∩Pi) ⊆Mk), i.e. a trace of E′ where transitions
t of each Ei fire as if they experienced no interference from the rest of E′. We
encode this as an LTL formula, obtaining a progress constraint ϕprogr for E′.
Similarly, we want to avoid adding synchronization which produces an event net
that is not 1-safe. We can also encode this as an LTL constraint ϕ1safe.
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Algorithm 1: Synchronization Synthesis Algorithm

Input: event net E =
⊔
{E1, E2, · · · , En}, LTL property ϕ, upper bound Y on

the number of added places, upper bound X on the number of added
transitions, upper bound I on the number of synchronization skeletons

Result: event net E′ such that E′ correctly synchronizes E
1 initRepairEngine(E1, E2, · · · , En, X, Y, I) ; // initialize repair engine (§4.1)
2 E′ ← E; (ϕ1safe, ϕprogr)← makeProperties(E1, E2, · · · , En);
3 while true do
4 ok ← true; props ← {ϕ,ϕ1safe, ϕprogr};
5 for ϕ′ ∈ props do
6 τctex ← verify(E′, ϕ′) ; // check the property (§4.2)
7 if (τctex = ∅ ∧ ϕ′ = ϕprogr) ∨ (τctex 6= ∅ ∧ ϕ′ = ϕ1safe) then
8 differentRepair(); ok ← f alse ; // try different repair (§4.1)

9 else if τctex 6= ∅ ∧ ϕ′ 6= ϕprogr then
10 assertCtex(τctex); ok←f alse ; // record counterexample (§4.1)

11 if ok then
12 return E′ ; // return correctly-synchronized event net

13 E′ ← repair(E′) ; // generate new candidate

14 if E′ = ⊥ then
15 return fail ; // cannot repair

Synchronization Synthesis Problem. Given event net E =
⊔
{E1, E2, · · · , En}

and property ϕ, produce E′ =
⊔
{E,S} which correctly synchronizes E, i.e.,

1. ∀τ ∈ traces(E′) : (τ B E) ∈ traces(E), i.e., each τ of E′ (modulo added
events) is a trace of E, and

2. ∀τ ∈ traces(E′) : τ |= ϕ, i.e., all reachable configurations satisfy ϕ, and
3. ∀τ ∈ traces(E′) : τ |= ϕ1safe, i.e., E′ is 1-safe, and
4. ∃τ ∈ traces(E′) : τ |= ϕprogr, i.e., E′ deadlock-free.

Event net S consists of synchronization skeletons (described in Section 4).

4 Fixing and Checking Synchronization in Event Nets

Algorithm 1 describes our solution—an instance of the CEGIS algorithm in [18,
22] which is now set up for problems of the form ∃E′((∀τ ∈ E′ : φ(E′, E, ϕ,
ϕ1safe)) ∧ ¬(∀τ ∈ E′ : τ 6|= ϕprogr)), where E,E′ are input/output event nets,
and φ captures 1-3 of the above specification. Our event net repair engine (Sec-
tion 4.1) performs synthesis (producing candidate solutions for ∃), and our event
net verifier (Section 4.2) performs verification (checking ∀).

The function makeProperties produces the ϕ1safe, ϕprogr formulas as de-
scribed in Section 3. We will now describe the details of the other functions.

4.1 Repairing Event Nets Using Counterexample Traces

The repair engine uses an SMT solver to perform the search for synchronization
constructs to fix a finite set of bugs (given as event-net traces which should
not be allowed). Figure 2 shows three types of synchronization skeletons which
our repair engine can add between the processes of the input event net E′. As
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Fig. 2: Synchronization skeletons: (1) Barrier, (2) Condition Variable, (3) Mutex.
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Fig. 3: SMT Function Symbols.

the figure indicates, the barrier skeleton does not allow events b, d to fire until
both a, c have fired. The condition variable requires event a to fire before event c
can fire. The mutex ensures that the events between a and b (inclusive) cannot
interleave with the events between c and d (inclusive). Our algorithm explores
different combinations of these skeletons, up to the given bounds.

Repair Engine Initialization. Algorithm 1 calls initRepairEngine(E1, E2, · · · ,
En, X, Y, I), which “initializes” the function symbols shown in Figure 3 with the
values from the input event nets, and asserts well-formedness constraints. Labels
in bold are function symbol names, and cells are the corresponding values. For
example, Petri is a 2-ary function symbol, and Mark is 1-ary. Note that there is a
separate Ctex ,Acc,Trans for each k. Letting B denote {true, false}, the types of
the function symbols are: Petri : N×N→ B×B, Mark : N→ N, Loc : N→ N×N,
Type : N→ N, Pair : N→ N×N×N, Range : N→ N×N×N×N, Len : N→ N,
Ctexk : N× N→ N, Acck : N→ B, Transk : N→ N.

The regions highlighted in Figure 3 are “set” (asserted equal) to values match-
ing the input event nets. For example, Petri(y, x) is of the form (b1, b2), where
we set b1 if and only if there is an edge from place y to transition x in E′,
and similarly set b2 if and only if there is an edge from transition x to place y.
Mark(y) is set to 1 if and only if place y is marked in E′. Loc(x) is set to the
location (switch/port pair) of the event at transition x. The bound Y limits how
many places can be added, and X limits how many transitions can be added.

The bound I limits how many synchronization skeletons can be used simul-
taneously. Each row i of Type,Pair ,Range represents a single added skeleton.
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Type(i) identifies one of the three types of skeletons. Up to J processes can
participate in each skeleton (Figure 2 shows the skeletons for 2 processes, but
they generalize to j ≥ 2), and by default, J is set to the number of processes.
Pair(i, j) is a tuple (id , fst , snd), where id identifies a process, and fst , snd is
a pair of events in that process. Range(i) is a tuple (pMin, pMax , tMin, tMax ),
where pMin, pMax reserve a range of rows in the added places section of Figure
3, and similarly, tMin, tMax reserve a range of columns in the added transitions.

We assert a conjunction φglobal of well-formedness constraints to ensure that
proper values are used to fill in the empty (un-highlighted) cells of Figure 3.
Primarily, these constraints force the Petri cells to be populated as dictated by
any synchronization skeletons appearing in the Type,Pair ,Range rows.

Asserting Counterexample Traces. Once the repair engine has been initialized,
Algorithm 1 can add counterexample traces by calling assertCtex (τctex). To add
the k-th counterexample trace τk = t0t1 · · · tn−1, we assert the conjunction φk
of the following constraints. These constraints make the columns of Ctexk cor-
respond to the sequence of markings of the current event net in Petri if it
were to fire the sequence of transitions τk. More specifically, Ctexk is induc-
tively defined as Ctexk(1) = Mark and for x > 1, Ctexk(x) is equal to the
marking that would be obtained if tx−1 were to fire in Ctexk(x− 1). The sym-
bol Acck is similarly defined as Acck(1) = true and for x > 1, Acck(x) ⇐⇒
(Acck(x − 1) ∧ (tx−1 is enabled in Ctexk(x − 1))). We also assert a constraint
requiring that Acck must become false before the end of the trace.

We must modify the above constraints to handle general counterexamples.
Specifically, if a trace of the event net in Petri is equal to τk modulo transitions
added by the synchronization skeletons, that trace should be rejected. We do
this by instead considering the trace τ ′k = 0, t0, 0, t1, · · · , 0, tn−1, and for the
“0” transitions, set Ctexk(x) as if we fired any enabled added transitions in
Ctexk(x−1), and for the ti transitions, update Ctexk(x) as described previously.
Therefore, the constraints φk are as follows:
1. The first column of Ctexk is equal to Mark .
2. Len(k)=n ∧Acck(1) ∧ ¬Acck(2 ·Len(k) + 1).
3. Acck(x) ⇐⇒ (Acck(x − 1) ∧ (Transk(x)=0 ∨ (Transk(x) is enabled in

Ctexk(x− 1)))).
4. For odd indices x ≥ 3, Transk(x) = t(x−3)/2, and Ctexk(x) is set as if

Transk(x) fired in Ctexk(x− 1).
5. For even indices x ≥ 2, Transk(x) = 0, and Ctexk(x) is set as if all enabled

added transitions fired in Ctexk(x− 1).
The last constraint works because for our synchronization skeletons, any added
transitions that occur immediately after each other in a trace can also occur in
parallel. The constraint ¬Acck(2 ·Len(k) + 1) makes sure that any synchroniza-
tion generated by the SMT solver will not allow the full trace τ to be accepted.

Trying a Different Repair. The differentRepair() function in Algorithm 1 makes
sure the repair engine does not propose the current candidate again. When this
is called, we prevent the current set of synchronization skeletons from appearing
again by taking the conjunction of the Type and Pair values, as well as the
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Algorithm 2: Event Net Verifier (Promela Model)

1 marked ← initMarking(); run singlePacket , transitions;
2 Process singlePacket:
3 lock(); status ← 1; pkt ← pickPacket(); n← pickHost();
4 do
5 pkt ← movePacket(pkt ,marked);
6 while pkt .loc 6= drop ∧ ¬isHost(pkt .loc);
7 status ← 2; unlock();

8 Process transitions:
9 while true do

10 lock();
11 t← pickTransition(marked); marked ← updateMarking(t,marked);
12 unlock();

values of Mark corresponding to the places reserved in Range, and asserting the
negation. We denote the current set of all such assertions φskip.

Obtaining an Event Net. When the synthesizer calls repair(E′), we query the
SMT solver for satisfiability of the current constraints. If satisfiable, values of
Petri ,Mark in the model can be used to add synchronization skeletons to E′.

Note that formulas φglobal, φskip, φ1, · · · have polynomial size in terms of the
input event net size and bounds Y,X, I, J , and are expressed in the decidable
fragment QF UFLIA (quantifier-free uninterpreted function symbols and linear
integer arithmetic). We found this to scale well with modern SMT solvers (§5).

Lemma 1 (Correctness of the Repair Engine). If the SMT solver finds that
φ = φglobal ∧φskip ∧φ1 ∧ · · · ∧φk is satisfiable, then the event net represented by
the model does not contain any of the seen counterexample traces τ1, · · · , τk. If
the SMT solver finds that φ is unsatisfiable, then all synchronization skeletons
within the bounds fail to prevent some counterexample trace.

4.2 Checking Event Nets

This section describes the verify(E′, ϕ′) function in Algorithm 1. From event
net E′, we produce a Promela model which we provide to an off-the-shelf LTL
model checker. Algorithm 2 shows the model pseudocode, which is an efficient
implementation of the semantics described in Section 3. Global variable marked
is a list of boolean flags, indicating which places currently contain a token. The
initMarking macro sets the initial values based on the initial marking of E′.
The singlePacket process randomly selects a packet pkt and puts it at a random
host, and then moves pkt until it either reaches another host, or is dropped
(pkt .loc = drop). The movePacket macro modifies/moves pkt according to the
current marking’s configuration. The pickTransition macro randomly selects a
transition t ∈ E′, and updateMarking updates the marking to reflect t firing.

We ask the model checker for a counterexample trace demonstrating a viola-
tion of ϕ′ in this model. If found, we extract the sequence of events e chosen by
pickEvent . We generalize this sequence by removing any events which are not in
the original input event nets. This sequence is returned as τctex to Algorithm 1.
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Lemma 2 (Correctness of the Verifier). If the verifier returns counterex-
ample τ , then E′ violates ϕ in one of the global configurations in configs(τ). If
the verifier does not return a counterexample, then all traces of E′ satisfy ϕ.

Overall Correctness Results. We now characterize the correctness of our syn-
chronization synthesis approach (the proofs use Lemma 1-2, and Theorem 1).

Theorem 2 (Soundness of Algorithm 1). Given E and ϕ, if Algorithm 1
returns an event net E′, then E′ correctly synchronizes E with respect to ϕ.

Theorem 3 (Completeness of Algorithm 1). If there exists an E′ =
⊔
{E,S},

where |S| ≤ I and synchronization skeletons S have fewer than X total transi-
tions and fewer than Y total places, and E′ correctly synchronizes E, then our
algorithm will return such an E′. Otherwise, the algorithm returns “fail .”

5 Implementation and Evaluation

We have implemented a prototype of our synchronization synthesis tool. The
repair engine described in Section 4.1 utilizes the Z3 SMT solver, and the verifier
described in Section 4.2 utilizes the SPIN LTL model checker. In this section,
we evaluate our system by answering the following questions:
1. Can we use our approach to model a variety of real-world network programs?
2. Is our tool able to fix realistic concurrency-related bugs?
3. Is the performance of our tool reasonable on real networks?

We address 1-2 via case studies based on real concurrency bugs described in
the networking literature, and address 3 by choosing one of these examples and
trying different topologies. Figure 5 shows performance results and quantitative
metrics. The first group of columns denote the number of switches (switch),
CEGIS iterations (iter), SPIN counterexamples (ctex), event nets “skipped” due
to a deadlock-freedom or 1-safety violation (skip), and formulas asserted to the
SMT solver (smt). The second group of columns report the runtime of the SPIN
verifier generation/compilation (build), SPIN verification (verify), repair engine
(synth), various auxiliary (misc), and overall execution (total).1

Example #1—Tenant Isolation in a Datacenter. We formalize the isolation prop-
erty from Section 2 using the LTL properties G(loc=H1 =⇒ G(loc6=H4)) and
G(loc=H3 =⇒ G(loc6=H2)). Our tool finds the barrier shown in Figure 1(b),
which properly synchronizes the event net to avoid isolation violations.

Example #2—Conflicting Controller Modules. In a real bug (El-Hassany et al.
[17]) encountered using the POX SDN controller, the concurrent modules Dis-
covery and Forwarding made conflicting assumptions about which forwarding
rules should be deleted, resulting in packet loss. Figure 4(a) shows a simpli-
fied version of the scenario, where the left side (1, A, 2, B) corresponds to the
Discovery module, and the right side (4, C, 3, D) corresponds to the Forwarding
module. In this example, Discovery is responsible for ensuring that packets can
be forwarded to H1 (i.e., that the configuration labeled with 2 is active), and

1 We ran these on a machine w/ 20GB RAM and 3.2 GHz 4-core Intel i5-4570 CPU.
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(a) Net #2 (b) Net #3 (c) Net #4 (d) Net #5

(e) Configurations #2 (f) Configurations #3

(g) Configurations #4 (h) Configuration #5

Fig. 4: Experiments—Event Nets and Configurations.

Forwarding is responsible for choosing a path for traffic from H3 (either the path
labeled 3 or 4). In all cases, we require that all traffic from H3 is not dropped.

We formalize this requirement using the LTL property G(loc=H3 =⇒
G(loc6=drop)), and our tool finds the two condition variables which properly
synchronize the event net to avoid packet loss. As shown in Figure 4(a), the
path corresponding to place 2 must be brought up before the path correspond-
ing to place 3 (i.e., event C can only occur after A), and can only be taken down
after the path 3 is moved back to path 4 (i.e., event B can only occur after D).

Example #3—Discovery Forwarding Loop. In a real bug scenario (Scott et al.
[41]) the NOX SDN controller’s discovery functionality attempted to learn the
network topology, but an unexpected interleaving of packets caused a small for-
warding loop to be created. We show how a forwarding loop can arise due to
an unexpected interleaving of controller modules. In Figure 4(b), the Forward-
ing/Discovery modules are the left/right sides respectively. Initially, Forwarding
knows about the red (1) path in Figure 4(f), but will delete these rules, and later
set up the orange (3) path. On the other hand, Discovery first learns that the
green (4) path is going down, and then later learns about the violet (6) path.
Since these modules both modify the same forwarding rules, they can create a
forwarding loop when configurations 1, 6 or 4, 3 are active simultaneously.

We wish to disallow such forwarding loops, formalizing this using G(status=1
=⇒ F (status=2)), where, as discussed in Section 4.2, status is set to 1 when the
packet is injected into the network, and set to 2 when/if the packet subsequently
exits or is dropped. Our tool enforces this requirement by inserting a barrier, as
in Figure 4(b), preventing the unwanted combinations of configurations.
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benchmark
#number time (sec.)

switch iter ctex skip SMT build verify synth misc total

ex01-isolation 5 2 2 0 320 10.56 10.23 0.04 0.55 21.38

ex02-conflict 3 14 3 10 388 20.50 5.23 1.14 1.70 28.57

ex03-loop 4 2 1 0 259 5.07 4.78 0.01 0.48 10.34

ex04-compose 5 2 1 0 307 25.28 21.00 0.03 0.50 46.81

ex05-exclusive 3 4 2 2 522 28.26 8.09 0.07 0.92 37.35

Ans 18 2 1 0 259 92.53 131.10 0.01 0.48 224.13

Cesnet1993 10 2 1 0 259 20.81 26.08 0.02 0.49 47.40

Claranet 15 2 1 0 259 69.84 85.03 0.02 0.51 155.40

Compuserve 14 2 1 0 259 61.19 69.20 0.02 0.51 130.91

Fatman 17 2 1 0 259 90.59 119.34 0.02 0.45 210.40

Gblnet 8 2 1 0 259 17.65 16.78 0.01 0.47 34.92

HostwayIntl 16 2 1 0 259 82.54 108.71 0.02 0.52 191.80

Itnet 11 2 1 0 259 24.62 31.61 0.02 0.47 56.71

JanetExtern 12 2 1 0 259 26.38 28.52 0.02 0.48 55.40

Layer42 6 2 1 0 259 18.22 17.10 0.01 0.45 35.79

Netrail 7 2 1 0 259 28.15 27.02 0.02 0.48 55.67

Nsfcnet 9 2 1 0 259 27.60 27.59 0.02 0.48 55.69

Nsfnet 13 2 1 0 259 42.82 57.34 0.02 0.50 100.68

Renam 5 2 1 0 259 10.59 10.23 0.02 0.50 21.34

Savvis 19 2 1 0 259 86.26 103.90 0.02 0.49 190.67

sw-07-4 7 2 1 0 259 33.99 37.17 0.01 0.45 71.63
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(b) FatTree benchmarks

Fig. 5: Performance of Examples. Scalability results: (a) Topology Zoo, (b) FatTree.

Example #4—Policy Composition. In an update scenario (Canini et al. [10]) in-
volving overlapping policies, one policy enforces HTTP traffic monitoring and
the other requires traffic from a particular hosts(s) to waypoint through a de-
vice. Problems arise for traffic processed by the intersection of these policies
(e.g., HTTP packets from a particular host), causing a policy violation.

Figure 4(g) shows such a conflict. The left process of 4(c) is traffic monitoring,
and the right process is waypoint enforcement. HTTP traffic is initially enabled
along the red (1) path. Traffic monitoring then intercepts this traffic and diverts
it to H2 by setting up the orange (2) path and subsequently bringing it down to
form the blue path (3). Waypoint enforcement initially sets up the green path
(5) through the waypoint S3, and finally allows traffic to enter by setting up
the violet (6) path from H1. For HTTP traffic from H1, if traffic monitoring is
not set up before the waypoint enforcement enables the path from H1, then this
traffic can circumvent the waypoint (on the S2→ S4 path), violating the policy.
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Properties G(pkt .type=HTTP ∧ pkt .loc=H5 =⇒ F (pkt .loc=H2∨ pkt .loc=
H3)), and (¬(pkt .src=H1∧pkt .loc=H3)U(pkt .src=H1∧pkt .loc=S3)) form the
specification (where U is until). Our tool finds Figure 4(c), which forces traffic
monitoring to divert traffic before waypoint enforcement proceeds.

Example #5—Topology Changes during Update. Pereśıni et al. [38] describe a
scenario in which a controller attempts to set up forwarding rules, and concur-
rently the topology changes, resulting in a forwarding loop being installed.

Figure 4(h), examines a similar situation where the processes in Figure 4(d)
interleave improperly, resulting in a forwarding loop. The left process updates
from the red (2) to the orange (3) path, and the right process extends the green
(5) to the violet (6) path (potential forwarding loops: S1, S3 and S1, S2, S3).

We use the Example #3 loop-freedom property. Our tool finds the mutex
synchronization skeleton shown in Figure 4(d). Note that both places 2, 3 are
protected by the mutex, since either would interact with place 6 to form a loop.

Scalability Experiments. Recall Example #1 (Figure 1(a)). Instead of the short
paths between the pairs of hosts H1, H2 and H3, H4, we picked a random set
of real wide-area network topologies from the Topology Zoo dataset, as well
as highly-connected (“small-world”) graphs, and datacenter FatTree topologies,
and randomly selected long host-to-host paths corresponding to Example #1.
We note in all of the experiments that the SMT component scales much more
readily than building/running SPIN verifiers.

6 Related Work

Synthesis for Network Programs. Yuan et al. [47] present NetEgg, pioneering
the approach of using examples to write network programs. In contrast, we focus
on distributed programs and use specifications instead of examples. Addition-
ally, different from our SMT-based strategy, NetEgg uses a backtracking search
which may limit scalability. Padon et al. [37] “decentralize” a network program
to work properly on distributed switches. Our work on the other hand takes a
buggy decentralized program and inserts the necessary synchronization to make
it correct. Saha et al. [40] and Hojjat et al. [19] present approaches for repairing
a buggy network configuration using SMT and a Horn-clause-based synthesis
algorithm respectively. Instead of repairing a static configuration, our event net
repair engine repairs a network program. A network update is a simple network
program—a situation where the global forwarding state of the network must
change once. Many approaches solve the problem with respect to different con-
sistency properties [20, 25, 30, 24, 32, 48]. In contrast, we provide a new model
(event nets) for succinctly describing how multiple updates can be composed, as
well as an approach for synthesizing synchronization for this composition.

Concurrent Programming for Networks. Some well-known network program-
ming languages (e.g., NetKAT [1, 43]) only allow defining static configurations,
and they do not support stateful programs and concurrency constructs. Many
languages [36, 35, 26], provide support for stateful network programming (of-
ten with finite-state control), but lack direct support for synchronization. There
are two recently proposed exceptions: SNAP [2], which provides atomic blocks,
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and the approach by Canini et al. [10], which provides transactions. Both of
these mechanisms are expensive and difficult to implement without damage to
performance. In contrast, our solution is based on locality and synchronization
synthesis. Our method is more fine-grained and efficiently implementable than
previous approaches. It builds on and extends network event structures (NES)
[33], which addresses the problem of rigorously defining correct event-driven be-
havior. From the systems side, basic support for stateful concurrent programming
is provided by switch-level mechanisms [8, 6, 42] and hypervisors [23], but global
coordination still must be handled carefully at the language/compiler level.

Petri Net Synthesis. Ehrenfeucht et al. [16] introduce the “net synthesis” prob-
lem, i.e., producing a net whose state graph is isomorphic to a given DFA, and
present the “regions” construction on which Petri net synthesis algorithms are
based. Many researchers continued this theoretical line of work [13, 12, 3, 21] and
developed foundational (complexity-theoretic) results. Synthesis from examples
for Petri nets was also considered [5, 9], and examined in the slightly different
setting of process mining [15, 39]. Neither of these approaches is directly appli-
cable to our problem of program repair by inserting synchronization to eliminate
bugs. More closely related is process enhancement for Petri nets [31, 4] but these
works either modify the semantics of systems in arbitrary ways, whereas we only
restrict behaviors by adding synchronization, or they rely on other abstractions
(such as timed Petri nets) which are unsuitable for network programming.

Synthesis/Repair for Synchronization. There are many approaches for fixing
concurrency bugs which use constraint (SAT/SMT) solving. The application ar-
eas include weak memory models [34, 29], and repair of concurrency bugs [11,
45, 7, 44]. The key difference is that while these works focus on shared-memory
programs, we focus on message-passing Petri-net based programs. Our Petri net
model is a general framework for synthesis of synchronization where many differ-
ent types of synchronization constructs can be readily described and synthesized.

7 Conclusion

Summary. We have presented an approach for synthesis of synchronization to
produce network programs which satisfy correctness properties. We allow the
network programmer to specify a network program as a set of concurrent be-
haviors, in addition to high-level temporal correctness properties, and our tool
inserts synchronization constructs necessary to remove unwanted interleavings.
The advantages over previous work are that (a) we provide a language which
leverages Petri nets’ natural support for concurrency, and (b) we provide an ef-
ficient algorithm for synthesizing synchronization for programs in this language.

Future Work. This paper suggests several directions for future research. First,
one could investigate a repair engine which would add arbitrary sets of places,
transitions, and edges, rather than choosing from our limited (yet customizable)
set. Second, it is possible to improve the integration between the repair engine
and the verifier, e.g., by taking advantage of the incremental capabilities of the
SMT solver, and building a verifier that is incremental in the sense that it only
re-checks the parts of the event net that changed since the last check.
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[11] Pavol Černý, Thomas A Henzinger, Arjun Radhakrishna, Leonid Ryzhyk,
and Thorsten Tarrach. “Efficient Synthesis for Concurrency by Semantics-
preserving Transformations”. In CAV (2013).

[12] Jordi Cortadella, Michael Kishinevsky, Luciano Lavagno, and Alexandre
Yakovlev. “Synthesizing Petri nets from state-based models”. In ICCAD.
IEEE, 1995, pp. 164–171.

[13] Jörg Desel and Wolfgang Reisig. “The Synthesis Problem of Petri Nets”.
In Acta Inf. 33.4 (1996), pp. 297–315.

[14] Advait Abhay Dixit, Fang Hao, Sarit Mukherjee, T.V. Lakshman, and
Ramana Kompella. “ElastiCon: An Elastic Distributed Sdn Controller”.
In ANCS. Los Angeles, California, USA, 2014.
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