
Department of Electrical Engineering and Computer Science

Technical Report

NU-EECS-00-00
August 9, 2013

Trigger Compilation for Energy-Efficient Reactive
Behavior in Wireless Sensor Networks

Jedidiah McClurg Goce Trajcevski

Abstract

In this project, we seek to address some of the issues which have traditionally made design
and development of Wireless Sensor Networks (WSN) very difficult. These issues include the
complexity of writing distributed systems on a large scale, as well as heterogeneity of the involved
motes/environments, and the necessity of energy-efficient communication as the nodes collaborate.
Ultimately, solving this problem will require a combination of tools that will (1) provide high-level
programming constructs which enable users to specify behavior of the entire system rather than
individual motes, (2) offer the ability to compile these system-level specifications into native code
for the heterogeneous motes, and (3) allow the WSN communication strategies to adjust dynami-
cally in order to keep energy usage to a minimum. Towards this end, we have developed the TCE2

(Trigger Compilation for Energy Efficiency) system, and this document discusses the details of our
system, and presents an accompanying demonstration to show that we have made progress in the
above three directions.

Keywords: Compiler, Energy Efficiency, Heterogeneous Nodes, ECA Trigger, Wireless Sensor
Network, Reactive Behavior, Environmental Monitoring, Active Database, TelosB, SunSPOT

Trigger Compilation for Energy-Efficient Reactive Behavior
in Wireless Sensor Networks

Jedidiah McClurg Goce Trajcevski

Department of Electrical Engineering and Computer Science

{jrm807, goce}@eecs.northwestern.edu

Abstract

In this project, we seek to address some of the issues which have
traditionally made design and development of Wireless Sensor Net-
works (WSN) very difficult. These issues include the complexity of
writing distributed systems on a large scale, as well as heterogene-
ity of the involved motes/environments, and the necessity of energy-
efficient communication as the nodes collaborate. Ultimately, solv-
ing this problem will require a combination of tools that will (1)
provide high-level programming constructs which enable users to
specify behavior of the entire system rather than individual motes,
(2) offer the ability to compile these system-level specifications into
native code for the heterogeneous motes, and (3) allow the WSN
communication strategies to adjust dynamically in order to keep en-
ergy usage to a minimum. Towards this end, we have developed the
TCE

2 (Trigger Compilation for Energy Efficiency) system, and
this document discusses the details of our system, and presents an
accompanying demonstration to show that we have made progress
in the above three directions.

1. Introduction and Objectives

Wireless sensor networks (WSN) are becoming increasingly com-
monplace in our day-to-day lives. They are now used for everything
from controlling robots to monitoring geological phenomena. This
surprising amount of variety means that programmers and engi-
neers from a large number of backgrounds need to develop, config-
ure, and support wireless sensor networks. In addition, as the scale
of these networks increases, it becomes imperative to take a data-
centric view of the WSN, visualizing the network as a distributed
database.

The concept of triggers from the study of Active Databases has
been proposed as a general approach for WSN programming in
a way that 1) is accessible to people from different backgrounds
and 2) produces energy-efficient communication between the net-
work nodes of large complicated WSNs. In this approach, individ-
ual and aggregate data can then be collected by issuing database-
style “queries”. For example, consider the small portion of an envi-
ronmental monitoring WSN shown in Figure 1.

The network consists of two physical regions R1 and R2, in
which motes (represented by circles) monitor luminance and tem-
perature, and can report readings back to the sink through tree-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Copyright c© ACM [to be supplied]. . . $10.00
Reprinted from , [Unknown Proceedings], , pp. 1–10.

Sink

R1R1
R2R2

Figure 1. Basic Environmental Monitoring Scenario with Two
Regions

based routing. An example query would be something like the one
shown in Figure 2.

Q1: Whenever the average luminance in Region R2 exceeds 80
lumens over the past minute, if the average temperature in Region
R1 is below 65◦F, then switch on the electric heating unit and
record the time.

Figure 2. A Query for the Basic Environmental Monitoring Ex-
ample

This could correspond to a set of outdoor nodes which monitor
solar panel light source, and a set of indoor sensors which monitor
room temperature, allowing the electric-powered heating unit to
turn on during a sunny day. There are several key things to notice
about this scenario.

• There is a temporal and event-based aspect (“over the past
minute”).

• The sensors/data are geographically distributed (i.e. regions
R1 and R2).

• Sensors may be heterogeneous (i.e. hardened outdoor light
sensors vs. cheap indoor thermostat temperature sensors)

Thus, a WSN database management system (DBMS) must al-
low for those things to be specified. In addition, the DBMS should
allow for the following important features:

• The WSN may need to be reconfigured dynamically (i.e. pro-
vided with control information).

• Motes are energy-constrained, so radio use should be mini-
mized.

• Motes are resource-constrained, so mote-based code should
not be complex.

One of the ways to address this is via ECA triggers [21], which
are database queries of the form on Event, if Condition holds,

1

then do Action. It has been show that this approach works well,
and allows for expressive language constructs [16]. Inherent in the
efficient execution of ECA triggers is the consideration of push-
based vs. pull-based communication [10] as the motes collaborate
to detect events and check conditions. To the best of our knowledge,
a full-featured ECA programming language/environment which
takes this into account is noticeably lacking.

To this end, we present in this report the TCE
2 (Trigger Com-

pilation for Energy Efficiency) project as a way to address the need
for such a system, especially in the context of heterogeneous nodes.
The system contains a graphical editor which allows network topol-
ogy to be specified and geographical regions to be defined, as well
as mote-level settings such as address and sensor/mote type, taking
care of the geographical and reconfiguration aspects. The center-
piece of the system is the Basic Event-Enabled Query Language
(BeeQL), which allows queries to be specified in a temporal and
event-based way, as shown in Figure 3.

ON EVENT (AVG(R2.light[-60,0]) > 80)
IF (AVG(R1.temp) < 65) (
SET R1.heating = TRUE;
SELECT AVG({R1.temp,R2.light});
SELECT time

)

Figure 3. BeeQL Code for the Basic Environmental Monitoring
Query

The other part of the system is a compiler which takes a system-
level BeeQL specification and compiles it to mote-level code, based
on the graphically-specified control information, taking care of the
heterogeneous aspect by targeting different code types depending
on sensor/mote selections. We have enabled TelosB and SunSPOT
motes in this way. Since the BeeQL query language is “close
enough” to the native language on these devices, the generated code
is efficient, so the resource-constrained aspect is satisfied. Finally,
the subsequent version of the compiler will generate code with
several different modes to create efficiency for energy-constrained
network operation.

In order to demonstrate the value of our system, we perform
several real-world monitoring demonstrations. In the first demon-
stration, we set up a network of TelosB and SunSPOT motes, and
cause our software to arrange them according to a tree topology
like the one shown in Figure 1. For this arrangement, we compile
system-level queries like the one above to mote-level code on the
individual motes, and then show that the correct behavior is hap-
pening in the WSN.

1.1 Paper Organization

This paper is organized as follows. Section 2 presents an overview
of our system and provides an illustrative example. Section 3
presents the BeeQL language in detail. Section 4 presents energy
conservation techniques which we propose for better system perfor-
mance. Section 5 describes the compilation of system-level BeeQL
queries to mote-level code. Section 6 discusses the system im-
plementation, and section 7 presents the detailed description of a
demonstration. Section 8 presents related work, and then section 9
concludes the paper and mentions future additions to the project.

2. System Overview

The system is organized into two components, the GUI frontend,
and the compiler, as shown in Figure 4

The GUI allows the WSN topology to be specified, and individ-
ual nodes to be selected from among the connected motes. Based on
the regions and sensor types chosen in the GUI, the user can then

Figure 4. System Overview

input BeeQL code queries via the code editor box. The user can
then hit the “compile” button, which sends the topology informa-
tion and BeeQL code to the compiler. The compiler then translates
the system-level code into source code for each target (e.g. nesC
code for TelosB and Java code for SunSPOT or the simulator). The
respective native-code compilers are then invoked, producing a na-
tive binary for each mote.

2.1 Specifying WSN Topology and Regions

When the GUI is invoked, the system first detects (via the indi-
vidual drivers) which motes are connected and ready to be pro-
grammed. Using this information, the graphical editor allows the
user to build the desired network topology by clicking to create new
nodes. Other connected hosts (sinks) are also allowed to be cre-
ated. As users on the remote host machines configure their WSN,

Figure 5. Connecting Sensors and Specifying Regions

the topology updates are propagated back to the local machine. For
example, in Figure 5, the local machine has address 192.168.0.102,

2

and the topology configured on the remotely-connected machine
192.168.0.101 is visible. Nodes and hosts can be arranged to match
actual geographical placement by clicking and dragging, and can
be deleted by CTRL-clicking. Connections can be made by click-
ing on each of the two respective nodes. Elliptical regions can be
selected by clicking and dragging on the background. In this way,
the user can assign a set of nodes to a region by enclosing them
with an ellipse, and can attach a name to the region.

By setting up the graphical representation of the WSN in this
way, the user can force the networked motes to arrange themselves
with the respective connections. For now, only tree connections are
supported. As the WSN operates, messages are then routed to their
destinations via local routing tables which are built immediately
before the compilation step (see Section 5).

2.2 Specifying and Issuing Queries

Once the configuration of the WSN has been completed via the
graphical interface, the user can write a BeeQL query in the code
panel. Region variables can be chosen based on the graphical repre-
sentation. For example, in Figure 6, we have specified our original
query Q1, setting up a trigger that will result in action being taken
when the respective events occur in the deployed R1 and R2 regions
of the WSN, and the results of a SELECT query to be displayed in
the window. The query can be executed by pressing the “Compile”

Figure 6. Specifying BeeQL Queries

button. This causes the compiler to be invoked on the code. The first
stage of the compilation takes this system-level code and translates
it to mote-level BeeQL code for each connected node. A code-
generation stage then converts each mote-level BeeQL code to a
corresponding target source code. These source programs are then
distributed to remotely-connected hosts if necessary, and the corre-
sponding native compilers are invoked to produce native mote-level
code and flash the binaries onto the attached motes.

Once this is completed, the WSN begins operating, first entering
an initial phase to perform time synchronization using the proper
topology, and then executing the triggers as instructed.

3. Basic Event-Enabled Query Language

(BeeQL)

The centerpiece of our system is the Basic Event-Enabled Query
Language, BeeQL (pronounced BeeQuel, as in Sequel for SQL).
This language retains the simplicity and compilation efficiency of

database query languages (e.g. SQL) while offering higher-level
constructs such as events and syntactic pattern matching 1.

All data is numeric, with floating-point numbers (e.g. 10.123)
and integers (e.g. 123) allowed, and the TRUE and FALSE constants
denoting 1 and 0 respectively. Arbitrary variables can be used, and
are initialized to 0. Variables can be local to a specific region, e.g.
R2.temp. The main construct of a BeeQL query is the ECA trigger,
as discussed previously.

3.1 Simple Temporal Model

We take a linear, discrete view of time, with a granularity of 1
second. The value of a variable R1.temp at time t can be deter-
mined via R1.temp[t], with t = 0 being the current time, and
t < 0 representing past values. We also allow predicates to be spec-
ified using interval temporal logic [2]. For example, variable values
over the past 30 seconds can be determined by using the construct
R1.temp[-29,0]. Issued at time t, this returns a set of the 30 val-
ues of R1.temp at times (t − 29) · · · t. “Future” times (t > 0)
are supported in action statements, such as SET R1.var[0,30] =
TRUE, which causes the variable to remain TRUE for the next 30
seconds, and then return to its previous value.

3.2 Simple Event Model

In the BeeQL language, an event can take the form of 1.) a temporal
predicate becoming TRUE in terms of the preceding discussion
regarding the time model, or 2.) a named event, with possibly
bound variables. Events can be generated internally to a node (e.g.
a change in sensor readings), or externally (e.g. a change in an
average value over a separate region). Complex events [27], e.g.
E1;E2 are not yet handled.

An event E is specified as described in Table 1 and other binary

(D1 < D1)
f i r e d a t t h e moment when d a t a D1

becomes n u m e r i c a l l y l e s s t h a n D2

(D1 <= D1)
f i r e d a t t h e moment when d a t a D1

becomes n u m e r i c a l l y l e s s t h a n or
e q u a l t o D2

(D1 == D1)
f i r e d a t t h e moment when d a t a D1

becomes n u m e r i c a l l y e q u a l t o D2

(V MATCHES P)
f i r e d a t t h e moment when v a r i a b l e
V matches p a t t e r n P

P
f i r e d when t h e named e v e n t
ma tch ing p a t t e r n P o c c u r s

Table 1. Specifying Events

operators > and >= are also provided. Data Di can be numeric
constants, local/remote variables, or operators on any combination
of those.

For example, we could define the event “luminance in region
R2 exceeds 80 lumens” with the expression (R2.light > 80), or
the event “message T C received” as RECV(T C).

3.3 Language Syntax and Functionality

A BeeQL program is specified as a list of ECA triggers. Each
trigger takes the form

ON EVENT E IF C A1 [ELSE (A2 |T)]

where E is an event as described in the previous section, C is a
condition (any of the Table 1 constructs except for the last one, i.e.

1 In this paper, we use the word “pattern” in the way commonly seen in the
programming languages literature, i.e. a pattern is a sequence of linguistic
constructs with a certain syntactic structure.

3

named events), and Ai are actions, and T is potentially another IF
· · · ELSE test.

Actions can take the following forms shown in Table 2.

O(X0, · · ·, Xn)
i n v o k e s o p e r a t o r O on
numer ic p a r a m e t e r s Xi

SET X = V
s e t s v a r i a b l e X t o t h e
numer ic v a l u e V

SET X += V
i n c r e a s e s v a r i a b l e X by
t h e numer ic v a l u e V

SELECT D s e l e c t s d a t a D

((A1 |T1); · · ·)
a s e q u e n c e o f a c t i o n s Ai

and / o r t e s t s Ti

Table 2. Specifying Actions

The language contains the built-in operators shown in Table 3 so

MIN(X) returns the minimum of a set X of values

MAX(X) returns the maximum of a set X of values

AVG(X) returns the average of a set X of values

SEND(P) sends a message named by pattern P

Table 3. Built-in Operators

we can use these in the respective queries. For example, we could
implement the query “report average temperature in region R1” as
SELECT AVG(R1.temp).

A full description of the BeeQL language (in the form of an
EBNF grammar) is provided in the Appendix A.

4. Proposed Energy Conservation Techniques

Triggers and statements executed locally on the motes do not use
very much power, however code involving access to remote vari-
ables uses the radio and hence is expensive in terms of energy us-
age. Our system currently uses a single communication strategy for
generated code, i.e. the Static Pull mode discussed below. In this
chapter, we propose an approach to reducing the WSN communi-
cation (and hence the energy usage) by using other communication
strategies.

4.1 Static Push-pull

Our compiler could produce more energy-efficient code for the
WSN motes by paying special attention to the communication
mode between pairs of nodes which are cooperating to execute an
ECA trigger. Although in general it is not possible to optimally
choose a static push/pull mode for each node which minimizes en-
ergy consumption, we present a simple heuristic which we believe
would help in some cases.

Consider a new query Q2:

ON EVENT (AVG(R2.light) > 90)
IF (AVG(R1.temp) > 80) (
SELECT AVG(R2.light)

)

Since this query needs an average over region R2 to detect the
event, the R2 motes can be put in push mode to regularly provide
their readings to the region’s base station B2. When B2 detects the
condition on the average, it can query B1, which in turn can query
its R1 nodes. In other words, B2 and the R1 motes are put in pull
mode.

Consider a slightly-modified version of the query, Q3:

Figure 7. Static Pull Mode

ON EVENT (AVG(R2.light) > 90)
IF (AVG(R1.temp[-30,0]) > 80) (
SELECT AVG(R2.light)

)

Figure 8. Static Push Mode

Again, B2 needs to regularly compute an average over R2 to detect
the event, so R2 motes are put in push mode. However, now B2
needs to know an average over the last 30 seconds from R1. In this
case, putting B2 in pull mode will generate unnecessary radio use
as B2 queries for the R1 average regularly. Thus, all the nodes are
put in push mode

In other words, a simple heuristic is to place nodes whose
triggers depend on an instantaneous external value in pull mode,
and place nodes whose triggers depend on a value over time in push
mode.

4.2 Adaptive Push-pull

The simple static push/pull approach does not work in all real-
world situations. For example, consider the following query Q3:

ON EVENT (R2.cars > 1)
IF (AVG(R1.temp) > 120) (
SELECT AVG(R2.light)

)

It may very well be the case that the event (R2.cars > 1) hap-
pens very often, for example on a high-traffic road. On the other
hand, the condition (AVG(R1.temp) > 120) may be true very in-
frequently, e.g. in the winter. Thus, assigning “pull” mode via our
heuristic would cause a massive amount of unnecessary query traf-
fic to R1. It may also be the case that sometimes the converse is
true, i.e. low traffic in conjunction with high temperatures. Thus,
statically assigning “push” mode may be no better. To achieve bet-
ter energy efficiency in the presence of such situations, it is use-
ful to dynamically detect the appropriate communication mode for
each link, rather than relying on a static determination (see Figure
9). In this way, as the relative rates of event occurrences change,
the system adjusts accordingly. The way that our compiler could
do this is by generating mote-level code having the communication
architecture shown in Figure 10. Initially, a static push/pull mode
is determined using the heuristic, e.g. “push” has been chosen for

4

Figure 10. Adaptive Push/Pull Communication Between Nodes (Push Mode Shown)

Figure 9. Adaptive Push/Pull Mode

B2 in the figure. As B1 regularly pushes data to B2, if B2 then de-
tects that B1 is using an improper mode (e.g. if too many unneeded
events are piling up), it informs B1 to switch modes.

5. Compilation of BeeQL to Mote-specific Code

The first step of the compilation is to translate the system-level
BeeQL queries into individual queries which can be easily run on
the motes, i.e. queries in which events are either detectable locally
or caused by an incoming message. To do this, we iterate through
the list of system-level triggers, and compile each of them in the
following way. Consider this generalized trigger operating on the
regions R1 · · ·RN .

ON EVENT Ex

IF Cy (
S1; · · · Sx; · · · Sy; · · · SN

) ELSE (
T1; · · · Tx; · · · Ty; · · · TN

)

The subscripts denote the associated region, e.g. Sx is a state-
ment referring to region Rx. Depending on the push/pull policy
as discussed in the previous section, the compiler will handle this
trigger accordingly, but for now, static pull mode is used. The mote-
level BeeQL code for the motes in each region is shown in Table 4
for static push/pull semantics, and the appropriate mode will even-
tually be chosen by the compiler using the heuristic discussed in the
previous section. When adaptive push/pull is enabled in the com-
piler, the code produced for each region will be a combination of
both the pull and push code, with the added event queuing func-
tionality and mode switching logic.

5.1 Compiling to TelosB

TelosB motes run the TinyOS operating system, and allow pro-
grams to be written in the nesC language [5]. This is a C-like
language which is enriched with functionality for event handling.

Specifically, events such as timers and radio message reception can
be detected by defining the appropriate functions (similar to a call-
back). Because our query language is event-based, it is straightfor-
ward to translate mote-level BeeQL triggers into nesC code. Each
ON EVENT construct which monitors a change in the value of lo-
cal predicate P (such as a variable value or sensor reading) will be
translated into a 1 Hz timer event with a check for P . Similarly,
each ON EVENT RECV(· · ·) construct be translated into a radio re-
ceive event, with the appropriate variable bindings implemented via
checks on the incoming message.

5.2 Compiling to SunSPOT

The SunSPOT motes are Java-powered devices which run the
Squawk Virtual Machine [22]. These allow much higher-level code
to be written, making heavy use of constructs such as threads and
automatic memory management. Thus, there are several ways to
translate BeeQL code to run on the SunSPOT. We take a simi-
lar approach to the TelosB approach, translating each event based
on local predicates into a thread-based 1 Hz timer. Radio receive
events are detected via blocking “input streams” of incoming pack-
ets.

5.3 Inter-Mote Communication

Although both the TelosB and the SunSPOT devices have the same
CC2420 radio chip and 802.15.4 physical/MAC layer protocols,
there are differences in the software stacks that make them initially
incompatible. A full discussion of these issues can be found in [1].
We addressed all of the incompatibilities mainly by modifying the
SunSPOT stack and application code. Here are the basic issues, and
an explanation of how we addressed them:

• The LOW POWER COMM mode needs to be enabled during
the build for TelosB.

• The radio on the SunSPOT needs to be set to the TinyOS chan-
nel (default 26), and address recognition needs to be disabled.

• The SunSPOT PAN ID needs to match that used by TinyOS
(default 0x22).

• The LowPan protocol cannot be used by SunSPOT, since the
fields are not compabible with default TinyOS messages, so we
need to write bare packets with protocol number (63) followed
by the AM type and then data payload.

• We created a SunSPOT protocol handler for 63, the TinyOS
Active Message (AM) protocol.

• We added translation from 64-bit SunSPOT addresses to 16-bit
addresses which work with TinyOS. This translation can occur
in the RadioPacket class, and also needs to happen in MacLayer
when the address of incoming packets is checked.

5

R1 Rx Ry RN

Pull

ON EVENT RECV(m)
IF (m MATCHES Y_C)
(

S1

) ELSE (
T1

)

ON EVENT Ex

SEND(Ry, R_C)

ON EVENT RECV(m)
IF (m MATCHES Y_C)
(

Sx

) ELSE (
Tx

)

ON EVENT RECV(R_C)
IF Cy (

Sy;
SEND(Y_C)

) ELSE (
Ty;
SEND(NO_C)

)

ON EVENT RECV(m)
IF (m MATCHES Y_C)
(

SN

) ELSE (
TN

)

Push

ON EVENT RECV(m)
IF (m MATCHES Y_C)
(

S1

) ELSE (
T1

)

ON EVENT Ex

IF cIsTrue (
Sx;
SEND(Y_C)

) ELSE (
Tx;
SEND(N_C)

)

ON EVENT RECV(m)
IF (m MATCHES Y_C)
(

SET cIsTrue = 1
) ELSE (

SET cIsTrue = 0
)

ON EVENT TICK
IF Cy (

SEND(Rx, Y_C)
) ELSE (

SEND(Rx, NO_C)
)

ON EVENT RECV(m)
IF (m MATCHES Y_C)
(

Sy

) ELSE (
Ty

)

ON EVENT RECV(m)
IF (m MATCHES Y_C)
(

SN

) ELSE (
TN

)

Table 4. Compiling with Static Pull/Push Semantics

Once these items are done, the TelosB and SunSPOT devices can
communicate seamlessly.

6. System Implementation

We have implemented the described approach, for the case of the
Static-Pull Mode, in a system we have termed TCE

2.

6.1 Software Development Timeline

The work for this project was completed between Summer 2012
and Summer 2013, as shown in Table 5.

• Summer ’12 (Jul ’12 - Sep ’12) – Develop Custom Tools and Query
Language

• Fall ’12 (Oct ’12 - Dec ’12) – Develop Compiler and GUI; present demo
at SenSys 2012

• Winter ’13 (Jan ’13 - Mar ’13) – Add GUI functionality; work on In-
GUI Simulator

• Spring ’13 (Apr ’13 - Jun ’13) – Update SPOT/TelosB Stack; work on
SIDnet SWANS

Table 5. Project Timeline

6.2 Custom Tools and Utilities

The project features a custom programming language that allows
network programs to be developed at the system level, meaning
the user can write queries and triggers which pertain to groups (re-
gions) of nodes rather than programming each node independently.
This language can be described as a Domain Specific Language
(DSL) since it aims to allow better programming in the WSN do-
main. The development of even a simple DSL can be a very time-
consuming process, with each addition/change of a language con-
struct requiring simultaneous changes to the lexer/parser and Ab-

stract Syntax Tree (AST) data structures. Since a new DSL may go
through many linguistic changes as its developers try to settle on
the proper syntax/semantics, this constant modification of the fron-
tend can incur significant overhead. To mitigate this issue in our
context, we have built the Parser Generator Generator (PGG) tool
using the OCaml programming language. This tool takes as input
an EBNF grammar specification (annotated with semantic actions,
etc.), and produces code for the OCaml parser generator (OCam-
lLex/OCamlYacc) and the appropriate AST data structures.

Program -> Expr <:int> { print_int $1;
Program(NoPos, $1) } ;

Expr ->
Integer <:int> { $1 }

| LParen Expr <:int> Plus Expr <:int> RParen {
$2 + $4 }

;
Integer -> ([1-9][0-9]*) {

int_of_string $1 } ;
Plus -> ’+’ ;
LParen -> ’(’ ;
RParen -> ’)’ ;
Blanks -> [\r\n\t]* <{}:()> : {}; // discard

Figure 11. Example EBNF Grammar Specification for the PGG
Tool

For example, when the above grammar specification is run
through PGG, the output is a working program which recognizes
parenthesized arithmetic expressions with the + operator, and com-
putes/prints the result, e.g. an input of ((1+2)+3) would result in
6. The PGG tool is composed of 2783 lines of OCaml code, and

6

is available for download.2 This tool will also be described in a
technical report [15].

6.3 BeeQL Language Implementation

Using the PGG tool, we then prototyped/developed our program-
ming language. There are 221 lines of code in the grammar spec-
ification, which results in the automatic generation of 1911 lines
of code for the lexer/parser and AST of the compiler, which could
equate to a nearly 10x productivity increase during language devel-
opment.

A full grammar for the language (specified as a PGG input file)
can be found in the Appendix A.

6.4 Query/Trigger Compiler Implementation

The compiler is a command-line tool that accepts details about the
WSN (routing table, region definitions, mote types, etc.) in addition
to a program written in the above language, and produces applica-
tion code (either nesC or Java) for each of the WSN motes. The
overall strategy used by the compiler is to translate each system-
level trigger into a set of mote-level triggers. Finally, for each mote
in the WSN, all of the triggers for that mote are collected together,
and translated to target code. There are 2267 lines of handwritten
OCaml code in the compiler, and the language-processing frontend
is auto-generated from a PGG grammar as discussed previously.

7. Graphical User Interface Implementation

The GUI provides a user-friendly interface to the compiler. Utiliz-
ing information from the installed TelosB/SunSPOT device drivers,
the GUI provides a drop-down list of all connected motes. The user
can then arrange the motes into the desired tree, and organize them
into numbered regions (e.g. R3, as above) by selecting them. Code
can then be entered in the box at the bottom of the window, and
a compile button sends the code and a corresponding routing table
etc. to the compiler. After the compiler is finished generating ap-
plication code for the motes, the GUI invokes the native build/flash
sequence for each mote. Overall, the GUI contains 4719 lines of
Java code.

7.1 SunSPOT/TelosB Interface/Stack Implementation

The generic heterogeneous WSN functionality is provided by an
application for TelosB and application for SunSPOT. The former is
1345 lines of nesC code, and the latter is 1761 lines of Java code.
The trigger code generated by the compiler is inserted into the
aforementioned generic application code to produce unique code
for each mote in the WSN. This generic application code provides
communication message structures and routines, multi-hop routing
functionality, and time synchronization functionality.

com/sun/spot/peripheral/radio/CC2420.java
com/sun/spot/peripheral/radio/RadioPacket.java
com/sun/spot/peripheral/radio/MACLayer.java
com/sun/spot/peripheral/radio/AMProtocolManager.java
com/sun/spot/peripheral/radio/IAMProtocolManager.java
com/sun/spot/io/j2me/am/AM.java
com/sun/spot/io/j2me/am/AMConnection.java
com/sun/spot/io/j2me/am/AMConnImpl.java
com/sun/squawk/io/j2me/am/Protocol.java

Table 6. Files Modified/Created in the Custom SunSPOT Stack

Although the SunSPOT and TelosB devices use similar radio
hardware/protocols, there were several very subtle changes that

2 https://github.com/jrmcclurg/ocaml parser gen

were required before the two types of devices could communi-
cate properly. As we mentioned in Section 5.3, two notable ex-
amples are 1) support for translation of the 64-bit SunSPOT de-
vice addresses to/from 16-bit TelosB device addresses, and 2) uni-
versal support for the TinyOS Active Message (AM) protocol. To
accomplish these, we changed/added some following files to the
SunSPOT firmware code, and then recompiled and flashed the cus-
tom firmware onto the SunSPOT motes (see Table 6).

7.2 In-GUI and SIDnet SWANS Simulation Support

Debugging of the compiler by deploying programs to physical
motes is very time-consuming, because the motes must be pro-
grammed sequentially, and the native compilation/flashing for each
SunSPOT and TelosB mote can take up to a minute(s) apiece. Thus,
it is desirable to have a faster way of deploying/running the pro-
gram on a virtual WSN. To accomplish this, we have modified the
SunSPOT backend of the compiler to output Java code for each
mote which can be dynamically loaded by the GUI. Compiling and
then immediately loading these nodes into memory is significantly
faster than flashing/running on the physical devices. The remain-
ing step is to add a virtual sensors and a transport layer to the GUI
which will allow the virtual motes to communicate with each other
and interact with the environment.

Another closely-related functionality is outputting virtual nodes
that can be used in the SIDnet SWANS simulator [6], which will
be very important for performing large-scale performance evalua-
tion of our system. We have the functionality in place for having
the compiler output code utilizing the Node interface of SIDnet
SWANS. As with the in-GUI simulator, we next need to modify the
lower network layer(s) to make SIDnet use our tree routing topol-
ogy and transport/deliver appropriately-formatted messages.

8. Demonstration

The system demonstration3 seeks to show how our tools can be
used to easily program a WSN based on a real-world environmental
monitoring situation. Specifically, we will define two geographic
regions, R3 and R4, and place a variety of TelosB/SunSPOT motes
into these regions. We will connect the motes to a laptop via USB,
and show how the GUI discovers the motes and allows them to be
selected and arranged into a desired topology, as shown in Figure
12.

Figure 12. Configuration Used for the System Demonstration

After arranging the motes into a tree and identifying the two
regions graphically, we will enter a basic query, and press the
“compile” button, showing how the compiler is invoked to produce

3 A 2.5-minute (sped-up) video of this demonstration is available at
https://vimeo.com/69068247

7

https://github.com/jrmcclurg/ocaml_parser_gen
https://vimeo.com/69068247

the corresponding nesC/Java code for each mote. It will then be
shown how the GUI sequentially flashes the motes by using their
respective native compilers on our generated code.

The first trigger we will examine is fairly straightforward, and
only refers to the R3 region (see Figure 13). This code listens for
the event which occurs when one of the motes in region R3 has
a luminance reading greater than 150. At the time of the event
occurrence, if one of the motes in R3 has a button pressed, turn
on all the LEDs in region R3, and otherwise turn off all the LEDs
in that region.

ON EVENT (MAX(R3.light) > 150)
IF (MAX(R3.button) > 0) (
SET R3.led = TRUE;
SELECT R3.led

) ELSE (
SET R3.led = FALSE

)

Figure 13. First Trigger for the Demonstration

We will then demonstrate a second trigger (see Figure 14) which
has more complex behavior. In this code, the event and condition
occur in geographically separate regions. Specifically, the event
occurs when a button is pressed in region R4, and the condition
checked upon event occurrence involves discovering whether all
the LEDs in R3 are turned on.

ON EVENT (MAX(R4.button) > 0)
IF (MIN(R3.led) > 0) (
SET R3.led = FALSE;
SELECT R3.led

) ELSE (
SET R3.led = TRUE

)

Figure 14. Second Trigger for the Demonstration

When the desired trigger has been compiled and deployed to all
the motes in the WSN, we will first manually initiate the time syn-
chronization protocol by pressing a button on the root node of the
routing tree. Once all the nodes are time-synchronized (indicated
when the “alive” LEDs begin flashing in unison), we will show
that the WSN responds in accordance to the behavior we specified
above. For the query in Figure 13, we will keep the motes in region
R3 shaded, and show that a button press has no effect. Then, we
will shine light directly on region R3, and show that a button press
now has the effect of changing the LED state. For the query in Fig-
ure 14, we will show that a button press in region R4 accomplishes
the expected check and action in region R3.

9. Related Work

There are a large number of approaches to WSN programming [18],
but our TCE

2 system is unique in its ability to simultaneously
address programming difficulty, energy-efficiency, and heterogene-
ity, which are some of the key challenges in WSN [8]. Our work
incorporates the general idea of programming with regions [25]
into a language which is situated in a “middle ground” between
solely-declarative specification languages and complex imperative
languages.

Declarative networking is the most constrictive extreme, where
the user is able to specify only high-level properties of the network.
[12]. TinyDB offers a database-oriented view of WSNs, with basic
support for triggers [9], and with a focus on minimizing energy us-
age [13]. There is some work in the vein of “macroprogramming”

which tries to take a high-level functional approach to WSN pro-
gramming, and has powerful compilation techniques [20] [19] [14]
[26], and also more “language-agnostic” macroprogramming work
[7]. There are similar approaches to macroprogramming, but ori-
ented towards streaming data [17]. The “IDEA Methodology” and
the Chimera active database provide object-oriented functionality,
triggers, constraints, etc., and has tools to compile/verify database
code, but not in a distributed WSN context [3]. At the most ex-
pressive extreme, the nesC event-based language allows arbitrary
programs to be written for individual motes.

The concept of Meta-triggers [24] is a good mix of these ideas,
retaining a database-oriented view of WSNs, while also achieving
efficient energy usage and enabling expressive ECA programming,
so we have chosen to pattern our project as a concrete implemen-
tation of this idea for system-level WSN development. Others such
as [28] have attempted such an implementation, but in a more re-
stricted (and not heterogeneous) context.

10. Conclusion and Future Work

We have described the design and demonstration of a high-level
programming environment for wireless sensor networks. Using
this system, an entry-level programmer can set up a WSN using
heterogeneous motes, specify a desired topology using the GUI,
write a single program containing database triggers in a usable
query language, and then rely on the compiler to produce the
native code and communication strategies for each of the individual
nodes.

There are three main items of future work we wish to accom-
plish. Firstly, we are still working on the simulator support, and
hope to include this functionality soon.

1. Finish built-in GUI simulator.

2. Finish interfacing the GUI/compiler with the SIDnet SWANS
simulator.

Finishing the above items will speed up the test/debug time for
the compiler, and will allow us to accomplish the following third
item more quickly:

3. Add support for other energy-efficient communication modes
(Static Push and Adaptive Push/Pull), and test/debug.

Finally, there are several other things that would be interesting
to investigate in the context of our system. For example, in addition
to reducing the overall network traffic via the adaptive push/pull
behavior, we would like to think about ways to reduce “overhear-
ing” [4] between non-communicating motes. As another example,
instead of developing/maintaining compiler backends for both Java
and nesC, we could investigate the feasibility of generating a uni-
form bytecode to run atop a small virtual machine on each mote.
Tiny VM [11] is one such virtual machine which demonstrates
that this approach may be workable. Another area of research we
would like to pursue is adding an “evolving” component to our lan-
guage constructs, similar to what has been done with the (ECA)2

paradigm [23]. This would allow triggers to initiate other triggers,
rather than limiting them to simple actions like SET and SELECT.

Acknowledgments

This research was conducted with support from the National Sci-
ence Foundation via grant NSF-CNS 0910952. The authors would
like to thank Jesse Yanutola for contributing an early prototype of
the system during his MS project, and Besim Avci for his useful
assistance regarding SIDnet-SWANS.

8

References

[1] Daniel Akker, Kurt Smolderen, Peter Cleyn, Bart Braem, and Chris
Blondia. TinySPOTComm: Facilitating communication over ieee
802.15.4 between sun spots and tinyos-based motes. In Sensor Ap-

plications, Experimentation, and Logistics, volume 29 of Lecture

Notes of the Institute for Computer Sciences, Social Informatics and

Telecommunications Engineering, pages 177–194. Springer Berlin
Heidelberg, 2010.

[2] J.F. Allen and G. Ferguson. Actions and events in interval temporal
logic. Journal of logic and computation, 4(5):531–579, 1994.

[3] S. Ceri and P. Fraternali. Designing applications with objects and
rules: The idea methodology. International Series on Database Sys-

tems and Applications, Addison-Wesley Longman, 1997.

[4] Q. Dong. Maximizing system lifetime in wireless sensor networks. In
Information Processing in Sensor Networks, 2005. IPSN 2005. Fourth

International Symposium on, pages 13–19. IEEE, 2005.

[5] David Gay, Philip Levis, Robert von Behren, Matt Welsh, Eric Brewer,
and David Culler. The nesC Language: A Holistic Approach to Net-
worked Embedded Systems. In Proceedings of the ACM SIGPLAN

2003 Conference on Programming Language Design and Implemen-

tation, PLDI ’03, pages 1–11, New York, NY, USA, 2003. ACM.

[6] O.C. Ghica, G. Trajcevski, P. Scheuermann, Z. Bischof, and
N. Valtchanov. Sidnet-swans: A simulator and integrated development
platform for sensor networks applications. In Proceedings of the 6th

ACM conference on Embedded network sensor systems, pages 385–
386. ACM, 2008.

[7] R. Gummadi, O. Gnawali, and R. Govindan. Macro-programming
wireless sensor networks using kairos. Distributed Computing in

Sensor Systems, pages 466–466, 2005.

[8] S. Hadim and N. Mohamed. Middleware: Middleware challenges and
approaches for wireless sensor networks. Distributed Systems Online,

IEEE, 7(3):1–1, 2006.

[9] Joseph M. Hellerstein, Wei Hong, Samuel Madden, and Kyle Stanek.
Beyond average: Toward sophisticated sensing with queries. In In

IPSN, pages 63–79, 2003.

[10] Annika Hinze. Efficient filtering of composite events. In Anne
James, Muhammad Younas, and Brian Lings, editors, New Horizons in

Information Management, volume 2712 of Lecture Notes in Computer

Science, pages 164–164. Springer Berlin / Heidelberg, 2003.

[11] P. Levis and D. Culler. Maté: A tiny virtual machine for sensor
networks. In ACM Sigplan Notices, volume 37, pages 85–95. ACM,
2002.

[12] B.T. Loo, T. Condie, M. Garofalakis, D.E. Gay, J.M. Hellerstein,
P. Maniatis, R. Ramakrishnan, T. Roscoe, and I. Stoica. Declarative
networking: language, execution and optimization. In Proceedings of

the 2006 ACM SIGMOD international conference on Management of

data, pages 97–108. ACM, 2006.

[13] Samuel R. Madden, Michael J. Franklin, Joseph M. Hellerstein, and
Wei Hong. TinyDB: An Acquisitional Query Processing System for
Sensor Networks. ACM Trans. Database Syst., 30(1):122–173, March
2005.

[14] G. Mainland, G. Morrisett, and M. Welsh. Flask: Staged functional
programming for sensor networks. ACM Sigplan Notices, 43(9):335–
346, 2008.

[15] Jedidiah McClurg. Parser Generator Generator (PGG): A Tool For
Rapid Parser Construction via EBNF Grammars. Northwestern EECS
Technical Report NU-EECS-12-04, 2012.

[16] Jedidiah McClurg, Goce Trajcevski, and Jesse Yanutola. Demo Ab-
stract: Collaborative Reactive Behavior in Heterogeneous Wireless
Sensor Networks. In Proceedings of the 10th ACM Conference on

Embedded Networked Sensor Systems, SenSys ’12, New York, NY,
USA, 2012. ACM.

[17] C. Monsanto, N. Foster, R. Harrison, and D. Walker. A compiler and
run-time system for network programming languages. In Proceedings

of the 39th annual ACM SIGPLAN-SIGACT symposium on Principles

of programming languages, pages 217–230. ACM, 2012.

[18] L. Mottola and G.P. Picco. Programming wireless sensor networks:
Fundamental concepts and state of the art. ACM Computing Surveys

(CSUR), 43(3):19, 2011.

[19] R. Newton, G. Morrisett, and M. Welsh. The regiment macroprogram-
ming system. In Information Processing in Sensor Networks, 2007.

IPSN 2007. 6th International Symposium on, pages 489–498. IEEE,
2007.

[20] R. Newton, M. Welsh, et al. Building up to macroprogramming: an in-
termediate language for sensor networks. In Information Processing in

Sensor Networks, 2005. IPSN 2005. Fourth International Symposium

on, pages 37–44. IEEE, 2005.

[21] Norman W. Paton, F. Schneider, and D. Gries, editors. Active Rules

in Database Systems. Springer-Verlag New York, Inc., Secaucus, NJ,
USA, 1st edition, 1998.

[22] D. Simon, C. Cifuentes, D. Cleal, J. Daniels, and D. White. Java on
the bare metal of wireless sensor devices: the squawk java virtual
machine. In Proceedings of the 2nd international conference on

Virtual execution environments, pages 78–88. ACM, 2006.

[23] G. Trajcevski, P. Scheuermann, O. Ghica, A. Hinze, and A. Voisard.
Evolving triggers for dynamic environments. Advances in Database

Technology-EDBT 2006, pages 1039–1048, 2006.

[24] G. Trajcevski, N. Valtchanov, O.C. Ghica, and P. Scheuermann. A
Case for Meta-Triggers in Wireless Sensor Networks. In Eighth IEEE

International Symposium on Network Computing and Applications,

NCA 2009, pages 171 –178, july 2009.

[25] M. Welsh and G. Mainland. Programming sensor networks using
abstract regions. NSDI, 2004.

[26] Geoffrey Werner-Allen, Patrick Swieskowski, and Matt Welsh. Mote-
lab: a wireless sensor network testbed. In Proceedings of the 4th in-

ternational symposium on Information processing in sensor networks,
IPSN ’05, Piscataway, NJ, USA, 2005. IEEE Press.

[27] D. Zimmer and R. Unland. On the semantics of complex events in ac-
tive database management systems. In Data Engineering, 1999. Pro-

ceedings., 15th International Conference on, pages 392–399. IEEE,
1999.

[28] M. Zoumboulakis, G. Roussos, and A. Poulovassilis. Active rules
for wireless networks of sensors & actuators. In Proceedings of the

2nd international conference on Embedded networked sensor systems,
pages 263–264. ACM, 2004.

A. BeeQL Language Syntax

Here we present a full specification of the BeeQL language, in the
form of an EBNF grammar. This grammar can be used as input to
the PGG tool to generate a parser (see Section 6.2).

Program -> NodeDecl? EdgeDecl? Table? RegionDecl*
Trigger* ;

NodeDecl -> "NODES" ’{’ NodeList? ’}’ ;
EdgeDecl -> "EDGES" ’{’ EdgeList? ’}’ ;
Table -> "TABLE" ’{’ NumArrayList? ’}’ ;
RegionDecl -> "REGION" VarOper ’=’ ’{’ NumList? ’}’ ;
NumArrayList -> NumArray

| NumArrayList ’,’ NumArray ;
NumArray -> ’{’ NumList ’}’ ;
NumList -> Integer

| NumList ’,’ Integer ;
NodeList -> Node

| NodeList ’,’ Node ;
EdgeList -> Edge

| EdgeList ’,’ Edge ;
Node -> Integer ’:’ VarOper ;
Edge -> ’(’ Integer ’,’ Integer ’)’ ;
Trigger -> "ON" "EVENT" Event TestList ;
TestList -> Test

| TestList ’;’ Test ;
Test -> "IF" Condition SimpleAction Else? ;
Else -> "ELSE" Action ;

9

SimpleAction ->
| Computation
| "SET" RegionVar "+=" Var
| "SET" RegionVar "-=" Var
| "SET" RegionVar ’=’ Var
| "SELECT" RegionOper
| ’(’ ActionList ’)’ ;

ActionList -> SimpleAction
| ActionList ’;’ SimpleAction ;

Action -> SimpleAction
| Test ;

Computation -> VarOper ’(’ Params? ’)’ ;
Param -> Var

| VarOper
| Computation ;

Params -> Param
| Params ’,’ Param ;

Data -> Value
| RegionOper ;

RegionOper -> RegionVar
| "AVG" ’(’ RegionVar ’)’
| "MIN" ’(’ RegionVar ’)’
| "MAX" ’(’ RegionVar ’)’ ;

Condition -> OrConditions ;
OrConditions -> AndConditions

| OrConditions "||" AndConditions ;
AndConditions -> AtomicCondition

| AndConditions "&&" AtomicCondition ;
AtomicCondition -> Data

| ’(’ VarName "MATCHES" Pattern ’)’
| BinCondition
| ’(’ Condition ’)’
| ’!’ AtomicCondition ;

BinCondition -> Data ’<’ Data
| Data ’>’ Data
| Data "<=" Data
| Data ">=" Data
| Data "==" Data
| Data "!=" Data ;

Event -> SimpleEvent
| Condition ;

SimpleEvent -> Pattern
| ’(’ SimpleEvent ’)’ ;

Pattern -> VarOper
| VarOper ’(’ Bindings? ’)’ ;

Bindings -> Var
| Bindings ’,’ Var ;

Var -> Value
| VarName ;

Value -> Const
| "RETR" ’(’ VarName ’,’ VarName ’,’

VarName ’,’ Const ’)’
| "RETR_AVG" ’(’ VarName ’,’ VarName’,’

VarName ’,’ Const ’,’ Const ’)’
| "RETR_MIN" ’(’ VarName ’,’ VarName ’,’

VarName’,’ Const ’,’ Const ’)’
| "RETR_MAX" ’(’ VarName ’,’ VarName ’,’

VarName ’,’ Const ’,’ Const ’)’ ;
UnsignedInteger -> ("0x" [0-9a-fA-F]+) | ’0’

| ([1-9] [0-9]*) ;
Integer -> UnsignedInteger

| ’-’ UnsignedInteger ;
Const -> "TRUE"

| "FALSE"
| Integer ;

RegionVar -> VarOper ’.’ TimeVar ;
TimeVar -> VarName

| VarName ’[’ Integer ’]’
| VarName ’[’ Integer ’,’ Integer ’]’ ;

VarName -> ([a-z] [a-zA-Z0-9_]*) ;
VarOper -> ([A-Z] [A-Z0-9_]*) ;
/* throw away single-line comments */
SingleComm -> ("--" [^\n]*) <{}:()> : {};
/* throw away multiline comments */
MultiComm -> "/*" .. "*/" <{}:()> : {};
// throw away whitespace
Blanks -> [\r\n\t]* <{}:()> : {};

10

	Introduction and Objectives
	Paper Organization

	System Overview
	Specifying WSN Topology and Regions
	Specifying and Issuing Queries

	Basic Event-Enabled Query Language (BeeQL)
	Simple Temporal Model
	Simple Event Model
	Language Syntax and Functionality

	Proposed Energy Conservation Techniques
	Static Push-pull
	Adaptive Push-pull

	Compilation of BeeQL to Mote-specific Code
	Compiling to TelosB
	Compiling to SunSPOT
	Inter-Mote Communication

	System Implementation
	Software Development Timeline
	Custom Tools and Utilities
	BeeQL Language Implementation
	Query/Trigger Compiler Implementation

	Graphical User Interface Implementation
	SunSPOT/TelosB Interface/Stack Implementation
	In-GUI and SIDnet SWANS Simulation Support

	Demonstration
	Related Work
	Conclusion and Future Work
	BeeQL Language Syntax

