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Abstract
Software-defined networking (SDN) programs must si-

multaneously describe static forwarding behavior and dy-
namic updates in response to events. Event-driven updates
are critical to get right, but difficult to implement correctly
due to the high degree of concurrency in networks. Existing
SDN platforms offer weak guarantees that often break appli-
cation invariants, leading to problems such as dropped pack-
ets, degraded performance, security violations, etc. This pa-
per introduces event-driven consistent updates that are guar-
anteed to preserve well-defined behaviors when transition-
ing between configurations in response to events. We pro-
pose network event structures (NESs) to model constraints
on updates, such as which events can be enabled simulta-
neously and causal dependencies between events. We define
an extension of the NetKAT language with mutable state,
and give semantics to stateful programs using NESs. We dis-
cuss strategies for implementing NESs using SDN switches,
and prove them correct. Finally, we evaluate our approach
empirically, demonstrating that it gives well-defined consis-
tency guarantees while avoiding expensive synchronization
and packet buffering.

1. Introduction
Software-defined networking (SDN) allows network be-

havior to be specified using logically-centralized programs
that execute on general-purpose machines. These programs
react to events such as topology changes, traffic statistics,
receipt of packets at a switch, etc. by modifying the set of
forwarding rules installed on switches. SDN programs can
implement a wide range of advanced network functionality
including fine-grained access control [7], network virtualiza-
tion [21], traffic engineering [14, 15], and many others.

Although the basic SDN model is simple, building so-
phisticated applications is challenging in practice. Pro-
grammers must keep track of numerous low-level details
such as encoding configurations into prioritized forwarding
rules, processing concurrent events, managing asynchronous
events, dealing with unexpected failures, etc. To address
these challenges, a number of domain-specific network pro-
gramming languages have been proposed [2, 9, 18, 20, 28,
29, 33, 34, 36]. The details of these languages vary, but they
all offer higher-level abstractions for specifying behavior—
e.g., using mathematical functions, boolean predicates, rela-
tional operators, etc.—and rely on a compiler and run-time
system to generate and manage the underlying network state.

Unfortunately, the languages that have been proposed so
far lack critical features that are needed to implement dy-
namic, event-driven applications. Static languages such as
NetKAT [2] offer rich constructs for describing network con-
figurations, but lack features for responding to events and
maintaining internal state. Instead, programmers must write
a stateful program in a general-purpose language that gener-
ates a stream of NetKAT programs. Dynamic languages such
as FlowLog and Kinetic [20, 29] offer stateful programming
models, but they do not specify how the network behaves
while it is being reconfigured in response to state changes.
Abstractions such as consistent updates do provide strong
guarantees during periods of reconfiguration [25, 31], but
current realizations are limited to properties involving a sin-
gle packet (or set of related packets, such as a unidirectional
flow). To implement dynamic SDN applications today, the
most effective option is often to use low-level APIs, forgo-
ing the benefits of higher-level languages entirely.
Example: Stateful Firewall. As an example to illustrate the
challenges that arise when implementing dynamic applica-
tions, consider a simple topology where an internal host H1

is connected to switch s1, an external host H4 is connected
to a switch s4, and switches s1 and s4 are connected to each
other (see Figure 7(a)). Now suppose we wish to implement
a stateful firewall: at all times the internal host H1 should
be allowed to communicate with the external host H4, but
H4 should only be allowed to communicate with H1 if H1

previously initiated a connection. Even implementing this
simple application turns out to be quite difficult, because it
involves coordinating behavior across multiple devices and
packets. For example, suppose that upon receiving a packet
from H1 at s4, the program might issue a command to in-
stall a forwarding rule on s4 allowing traffic to flow from H4

back to H1. While the forwarding rule is being installed, the
packet will be forwarded to H4. Hence, it is likely that the
response from H4 will be dropped at s4, which is incorrect
from the perspective of the application. The root cause of
this error is that the network fails to provide strong semantic
guarantees during periods of transition between configura-
tions in response to network events. An eventual guarantee is
not sufficiently strong to implement the stateful firewall cor-
rectly, and even a consistent update would not help—it only
says what must happen to each individual packet, whereas
the application requires propagating the update to the switch
instantly. Clearly, a different approach is needed.
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Event-driven Consistent Updates. This paper proposes a
new semantic correctness condition that gives clear guaran-
tees about updates triggered by events. This condition pro-
vides a specification of how the network should behave dur-
ing updates, and enables—for the first time—precise formal
reasoning about stateful network programs.

Formally, an event-driven consistent update is a triple
Ci

e−→ Cf , where Ci and Cf are configurations and e is an
event. Intuitively, the configurations describe the forwarding
behavior of the network before and after the update, while
the event represents an occurrence such as the receipt of a
packet at a particular switch that triggers the update itself.
Semantically, the update ensures that:
1. Packets are forwarded consistently. Each packet should

be processed by Ci or Cf , but not a mixture of the two.
2. The network does not update too early. If every switch

traversed by the packet has not heard about the event,
then the packet must be processed by Ci.

3. The network does not update too late. If every switch
the packet traverses has heard about the event, then the
packet must be processed by Cf .

The first criterion requires that updates are consistent, which
is analogous to the condition proposed previously by Reit-
blatt et al. [31]. However, consistent updates alone would
not provide the guarantees necessary for the stateful firewall
example, as they apply only to a single packet, and not to
multiple packets in a bidirectional flow. The last two crite-
ria relate the packet-processing behavior on each switch to
the events it has “heard about.” Note that these criteria leave
substantial flexibility for implementations: packets that do
not satisfy the second or third condition can be processed by
either the Ci or Cf configuration. It remains to define what
it means for a switch s to have “heard about” an event e
that occurred at switch t (assuming s 6= t). We use a causal
model and say that s hears about e when a packet, which was
processed by t after e occurred, is received at s. This notion
can be formalized using the “happens-before” relation.

Returning to the stateful firewall, it is not hard to see that
the semantic guarantees offered by event-driven consistent
updates are sufficient to ensure the correctness of the overall
application. Let us consider an update Ci

e−→ Cf . In Ci, H1

can send packet to H4, but not vice-versa. In Cf , addition-
ally H4 can send packets to H1. The event e is the arrival
at s4 of a packet from H1 to H4. Now imagine the event e
occurs, the and the host H4 wants to send a packet to H1 af-
terwards. Can s4 drop the new packet as it would have done
in the initial configuration Ci? No, because the only switch
the packet would traverse is s4, and s4 has heard about the
event. It follows that the only possible implementation pro-
cesses the new packet in Cf .

Note that while event-driven updates require immediate
responses to local events, importantly, they do not require
immediate reactions to events “at a distance.” For example,
the receipt of a packet in New York does not immediately

affect the behavior of switches in London. Intuitively, this
makes sense: requiring immediate reaction to remote events
would force expensive synchronization between switches
and buffering of packets, leading to unacceptable perfor-
mance penalties. These issues are an instance of the well-
known tension between consistency and availability in dis-
tributed systems. Existing SDN languages prioritize avail-
ability (no expensive synchronization and packet buffering)
over consistency (weak guarantees when state changes).

This paper demonstrates that it is possible to provide the
same level of availability, while providing a natural consis-
tency condition that is sufficiently powerful to build many
applications. We also show that in general, strengthening the
condition would force us to weaken availability. Overall, we
believe that an abstraction based on (i) a notion of causal
consistency that requires that events must be propagated be-
tween nodes, and (ii) per-packet consistency that governs
how packets are forwarded through the network is a pow-
erful combination that is a natural fit for many applications.
Event-Driven Transition Systems. To specify an event-
driven consistent update, we use labeled transition systems
called event-driven transition systems (ETSs). In an ETS,
each node is annotated with a network configuration and
each edge is annotated with an event. For example, the sim-
ple stateful firewall application would be described as a two-
state event-driven transition system, one representing the
initial configuration before H1 has communicated with H4

and another representing the configuration after communi-
cation has occurred. There would also be a transition be-
tween the states upon receipt of a packet from H1 to H4 at
s4. This model is similar to the finite state machines used
in Kinetic [20]. However, we stipulate that every transition
Ci

e−→ Cf must be implemented as an event-driven con-
sistent update whereas Kinetic uses best-effort updates. For
simplicity, we focus on finite state systems and events corre-
sponding to the packet delivery in this paper. However, these
are not fundamental assumptions—our design extends natu-
rally to other notions of event and infinite state systems.
Network Event Structures. The key challenge in implement-
ing event-driven consistent updates stems from the fact that
at any time, different switches may have different views of
the global set of events that have occurred in the network.
Hence, for a given ETS, several different updates may be en-
abled at a particular moment of time, and we need a way to
resolve conflicts. To do this, we use the well-studied model
of event structures [37] that constrains transitions in two
ways: (1) causal dependency which requires that an event
e1 happens before another event e2 may occur, and (2) com-
patibility which forbids pairs of events that are in some sense
incompatible with each other from occurring in the same ex-
ecution. As an example to illustrate why compatibility con-
straints are needed, suppose that New York sends packets
to London and Paris, but the ETS only allows the first one
to receive a packet to respond. Clearly, it would be impos-
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sible to implement this behavior without significant coordi-
nation. On the other hand, suppose New York and Philadel-
phia are sending packets to London, and London is allowed
to respond only to the one from whom it first received a
packet. Clearly, this behavior is easily implementable since
the choice is local to London. We use the event structures to
rule out non-local incompatible events—i.e., events that are
incompatible must concern the same switch.
Implementation. Network event structures also provide a
natural formalism for guiding an implementation of updates.
Intuitively, we need switches that can record the set of events
that have been heard locally, make decisions based on those
events, and also transmit events to other switches. Fortu-
nately, in the networking industry there is a trend toward
more programmable data planes: mutable state is already
supported in most switch ASICs (e.g. MAC learning table)
and is also being exposed to SDN programmers in next-
generation platforms such as OpenState [4] and P4 [5]. Us-
ing these features, we can implement network event struc-
tures as follows:
1. Encode the sets of events contained in the network event

structure as flat tags that can be carried by packets and
tested on switches.

2. Compile the configurations contained in the network
event structure to a collection of forwarding tables.

3. Add predicates to the forwarding rules in each configu-
ration that explicitly test for the tag(s) that enable that
configuration.

4. Add rules to stamp incoming packets with the tag corre-
sponding to current set of events at ingress (as in as in
two-phase updates [31]).

5. Add rules to “learn” which events have happened by
reading tags on incoming packets and adding the tags in
the local state to outgoing packets, as required to imple-
ment the happens-before relation.

We prove that a system implemented in this way correctly
implements a network event structure.
Evaluation. To evaluate our design for event-driven consis-
tent updates, we have used our prototype implementation to
build a number of event-driven network applications: (a) a
stateful firewall, which we have already described; (b) a
learning switch that floods packets going to unknown hosts
along a spanning tree, but uses point-to-point forwarding
for packets going to known hosts; (c) a port knocking gate-
way that blocks incoming traffic, but allows hosts to gain
access to the internal network by sending packet probes to
a predefined sequence of ports. Additionally, we have built
a synthetic application that forwards around a ring topol-
ogy to evaluate update scalability. We developed these ap-
plications in Stateful NetKAT (code extracts can be found
in §5). Our experiments show that our implementation pro-
vides competitive performance on several important metrics
while ensuring strong consistency properties. We draw sev-
eral conclusions: First, event-driven consistent updates allow

programmers to easily write real-world network applications
and get the correct behavior, whereas approaches relying
only on best-effort consistency guarantees do not. Second,
our design provides high availability, since it does not re-
quire any buffering of packets. Third, the performance over-
head of maintaining state and manipulating tags (measured
in terms of bandwidth) is within 6% of an implementation
that provides only best-effort consistency. We also discuss an
optimization that exploits common structure in rules across
many states to reduce the number of rules that must be in-
stalled on switches. In our experiments, a basic heuristic ver-
sion of this optimization resulted in 32-37% reduction in the
number of rules required on average.
Summary. Our main contributions are as follows.
• We propose a new semantic correctness condition called

event-driven consistent updates that balances the need
for immediate response with the need to avoid costly
synchronization and buffering of packets.

• We propose network event structures as a semantic struc-
ture that captures causal dependencies and compatibility
between events.

• We describe an implementation based on a stateful ex-
tension of NetKAT, and present optimizations that reduce
the overhead of implementing stateful programs.

• We conduct experiments showing that our approach gives
well-defined consistency guarantees to realistic applica-
tions, while avoiding expensive synchronization such as
packet buffering.

The rest of this paper is structured as follows: §2 formalizes
event-driven consistent updates; §3 defines event transition
systems, network event structures, and stateful NetKAT; §4
describes our implementation; §5 presents experiments.

2. Event-driven Network Behavior
This section presents our new consistency model for

stateful network programs: event-driven consistent updates.
Preliminaries. A packet is a pair (pid , ph) containing a
unique ID pid and a record of fields ph , where fields include
source and destination addresses, protocol type etc. IDs are
only used to streamline the formal definitions below and are
not fundamental—in particular, our implementation does not
use them. A switch sw is a node in the network with one or
more ports pt . A host is a switch that can be a source or a
sink of packets. A location is a switch-port pair n:m. Loca-
tions may be connected by the links in the topology.

Local forwarding at each switch is dictated by a network
configuration C. A located packet lp = (pkt , sw , pt) is a tu-
ple consisting of a packet, a switch, and a port. Formally, we
model the configuration C as a relation on located packets: if
C(lp, lp′), then the network maps lp to lp′, possibly chang-
ing its location and rewriting some of its fields. We assume
that C respects the links in the topology and does not depend
on or modify the ID field. Note that as C is a relation, it may
create multiple output packets from a single input.
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Figure 1: Example topology with four switches and hosts.

A packet trace is a sequence of located packets with
the same ID—i.e., a trace corresponds to a single packet
moving through the network. The set of packet traces that
start at a host and can be produced by the network in a single
configuration C is denoted by Traces(C).

A network trace ntr is a sequence of located packets.
Intuitively, a correct network trace will be defined to be an
interleaving of packet traces from Traces(C), possibly for
different configurations C. Given a network trace ntr and
an ID pid , we define a packet trace ntr↓pid by removing
from ntr all located packets whose ID is not equal to pid .

We now define how the network changes its configuration
in response to events. An event e is a tuple (eid , ϕ, sw , pt),
where eid is an event identifier and ϕ is a formula over
fields of a packet header. Events model the arrival of a packet
with headers ph satisfying ϕ (denoted ph |= ϕ) at location
sw :pt . Note that we could have other events (links coming
up or going down, etc.)—anything that a switch can detect
could be an event—but for simplicity, we focus on packet
events. A located packet lpi = ((pid , ph), sw ′, pt ′) matches
an event e = (eid , ϕ, sw , pt) (denoted by lp |= e) iff
sw = switch′∧pt = port′∧ph |= ϕ. Given a network trace
ntr = lp0lp1 . . ., the k-th event occurrence eo(ntr , e, k)
in ntr of an event e = (eid , ϕ, sw , pt) is a located packet
lpj where the index j is the k-th smallest element in the set
{i | lpi = ((pid , ph), sw , pt) ∧ lpi |= e} (and eo(ntr , e, k)
is undefined for k larger than the size of the set).

Definition 1 (Happens-before relation ≺ntr ). Given a net-
work trace ntr = lp0lp1 . . ., the happens-before relation
≺ntr is the least partial order on located packets in ntr that
• respects the total order induced by ntr at switches, i.e.,
∀i, j : lpi ≺ lpj ⇐ i < j ∧ lpi = (pkt , sw , pt) ∧ lpj =

(pkt ′, sw , pt ′), and
• respects the total order induced by ntr for each packet,

i.e., ∀i, j : lpi ≺ lpj ⇐ i < j ∧ lpi = (pkt , sw , pt) ∧
lpj = (pkt ′, sw ′, pt ′) ∧ pkt = (pid , ph) ∧ pkt ′ =

(pid , ph ′).

Event-Driven Consistent Updates. An event-driven consis-
tent update of a network is a triple consisting of initial con-
figuration Ci, event e, and final configuration Cf . We denote
such an update by Ci

e−→ Cf . We now define a correctness
condition on network traces.

Definition 2 (Event-driven consistent update). A network
trace ntr = lp0lp1 . . . is correct w.r.t. an event-driven
consistent update Ci

e−→ Cf iff the following condition
holds. Let lpe be the first occurrence of e in ntr (i.e.,
lpe = eo(ntr , e, 1)). For all IDs pid occurring in ntr , let

ntr↓pid = lppid
0 lppid

1 . . .. For all pid occurring in ntr we
require:
• if ∀j : lppid

j ≺ lpe, then ntr↓pid is in Traces(Ci), (i.e.,
the packet is processed in Ci), and

• if ∀j : lpe ≺ lppid
j , then ntr↓pid is in Traces(Cf ) (i.e.,

the packet is processed in Cf ), and
• otherwise, ntr↓pid is in Traces(Ci) ∪ Traces(Cf ) (i.e.,

the packet is processed in one of Ci or Cf ).

To illustrate, consider Figure 1. We describe an update
Ci

e−→ Cf . In the initial configuration Ci, the host H1

can send packets to H2, but not vice-versa. In the final
configuration Cf , traffic from H2 to H1 is allowed. Event
e models the arrival to s4 of a packet from H1 (imagine
s4 is part of a distributed firewall). Assume that e occurs,
and immediately afterwards H2 wants to send a packet to
s1. Can s2 drop the packet (as it would do in configuration
Ci)? Event-driven consistent updates allow this, as otherwise
we would require s2 to react immediately to the event at s4,
which would be an example of action at a distance. Formally,
the occurrence of e is not in a happens-before relation with
the arrival of the new packet to s2. On the other hand, if e.g.
s4 forwards some packets to s1 and s2 before the new packet
from H2 arrives, s1 and s2 would be required to change their
configurations, and the packet would be allowed to reach H1.
Network Event Structures. Event-driven consistent updates
specify how the network should behave during a single up-
date triggered by an event, but we also want to specify be-
havior when multiple events occur, and capture constraints
between the events. For example, we might want to say that
e2 can only happen after e1 has occurred, or that e2 and e3
cannot both occur in the same network trace.

To model such constraints, we turn to the event struc-
tures model introduced by Winskel [37]. Intuitively, an event
structure endows a set of events E with (a) a consistency
predicate (con) specifying which events are allowed to oc-
cur in the same sequence, and (b) an enabling relation (`)
specifying a (partial) order in which events can occur.

Definition 3 (Event structure). An event structure is a tuple
(E , con,`, g) where:
• E is a set of events,
• con : fin(P(E)) → Boolean is a consistency predicate

that satisfies con(X) ∧ Y ⊆ X =⇒ con(Y ),
• ` : P(E) × E → Boolean is an enabling relation that

satisfies (X ` e) ∧X ⊆ Y =⇒ (Y ` e).

Each event structure can be seen as defining a transition sys-
tem whose states are the finite subsets of E that are consis-
tent and reachable via the enabling relation. We refer to such
a subset an as an event-set (called “configuration” in [37]).

Definition 4 (Event-set of an event structure). Given an
event structure M = (E , con,`), an event-set of M is any
subset X ⊆ E which is: (a) consistent: ∀Y ⊆fin X , con(Y )
is true, and (b) reachable via the enabling relation: for each
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e ∈ X , there is a sequence e0, e1, · · · , en ∈ X where
en = e and {e0, · · · , ei−1} ` ei for all i ≤ n.

We want to be able to specify which network configura-
tion should be active at each event-set of the event structure.
Thus, we need the following extension of event structures:

Definition 5 (Network event structure (NES)). A network
event structure is a tuple (E , con,`, g) where (E , con,`) is
an event structure, and g : P(E) → C maps each event-set
of the event structure to a network configuration.

Correct Network Traces. Now we define what it means for a
network trace to be correct w.r.t. a given network event struc-
ture M . Intuitively, if ntr is a network trace, we consider the
unique sequence S of events that is both allowed by M , and
matches the trace ntr .

To start, note that the first event of S is uniquely deter-
mined, if it exists. Let Cnd0 be a set of events e such that ∅ `
e and con({e}). Let e0 be the event in Cnd0 which has the
first occurrence in ntr among the events in Cnd0. The event
e0 is then the first event in the sequence S. (If Cnd0 is empty,
or no event in Cnd0 has an occurrence in ntr , we return an
empty sequence S). Let k0 be the index of the first occur-
rence of e0 in ntr . Similarly, after finding first i − 1 events,
the i-th event is uniquely determined, if it exists. For 1 ≤ i,
let Cnd i be the set of events e such that {e0, e1 . . . ei−1} ` e
and con({e0, e1 . . . ei−1, e}). Let ei be the event in Cnd i

which has the first occurrence in ntr (among the events in
Cnd i) which is a located packet lp = ((pid , ph), sw) such
that ntr↓pid is in Traces(g({e0, e1 . . . ei−1})). When no
such event exists, we return the sequence S = e0 . . . ei−1.
Let ki be the index of the corresponding occurrence of ei in
ntr . Let N be the length of the sequence of events ei and
corresponding indices ki. We have thus obtained a sequence
of events S = e0e1 . . . eN and their corresponding occur-
rences (for the event ei, the relevant occurrence in ntr is ki).

We now check whether the trace ntr satisfies the se-
quence S according to the event-driven consistent update
condition extended to sequences of events. For all IDs
pid occurring in ntr , let ntr↓pid = lppid

0 lppid
1 . . .. For

all pid occurring in ntr , we require that ntr↓pid is in⋃N
j=0 Traces(g({e0, e1 . . . ej})) (i.e., each packet is pro-

cessed entirely by one configuration, not by a mixture of
configurations), and furthermore:
• if ∀j : lppid

j ≺ lpki
, then ntr↓pid is an element of⋃i−1

j=0 Traces(g({e0, e1 . . . ej})), that is, the packet is
processed by one of the configurations preceding ei, and

• if ∀j : lpki
≺ lppid

j , then ntr↓pid is an element of⋃N
j=i+1 Traces(g({e0, e1 . . . eiei+1 . . . ej})), that is, the

packet is processed by a configuration that follows ei.
Locality Restrictions for Incompatible Events. We now
show how NESs can be used to impose reasonable local-
ity restrictions on updates. A set of events E is called in-
consistent if con(E) does not hold. It is called minimally-

inconsistent iff all of its proper subsets are consistent.
An NES M is called locally-determined iff for all of its
minimally-inconsistent sets E, we have that all events in E
happen at the same switch (i.e., there exists a switch sw such
that each ei ∈ E is of the form (eid i, ϕi, sw)).

To illustrate the need for the locally-determined property,
recall that two events are inconsistent if either of them can
happen, but both cannot happen in the same execution. Con-
sider the topology shown in Figure 1 and suppose the pro-
gram requires that H2 and H4 can both receive packets from
H1, but only the first one to receive a packet is allowed to
respond. There will be two events e1 and e2, with e1 the ar-
rival of a packet from H1 at s2, and e2 the arrival of a packet
from H1 at s4. The two events are always enabled, but the
set {e1, e2} is not consistent (con({e1, e2}) does not hold).
This models the fact that at most one of the events can take
effect. These events are on different switches – making sure
that at most one of the events takes effect would necessitate
information to be propagated instantaneously “at a distance.”
In implementations, this would lead to synchronization and
buffering of packets. This is where the locality restriction
comes into play–it gives us a clean condition that ensure that
the NES semantics is efficiently implementable.

On the other hand, consider the requirement that H2 can
send traffic to one of the two hosts (H1, H3) that sends it
a packet first. The two events (a packet from H1 arriving at
s2, and a packet from H3 arriving at s2) are still inconsis-
tent, but inconsistency does not cause problems in this case,
because both events happen at the same switch. The switch
can properly determine which one was the first.
Strengthening Consistency. We now show that strengthen-
ing the consistency conditions imposed by NESs would lead
to lower availability, as it would lead to the need for ex-
pensive synchronization (packet buffering, etc.). First, let us
now try to remove the locally-determined condition, and ob-
tain a strengthened consistency condition. The proof of the
following theorem is an adaptation of the proof of the CAP
theorem [6] as presented in [12]. The idea is that in asyn-
chronous network communication, a switch might need to
wait arbitrarily long to hear about an event.

Lemma 1. It is impossible to faithfully implement an NES
that does not satisfy the locally-determined condition while
guaranteeing that every packet will be processed by each
switch within an given a priori time bound.

We now ask whether we can strengthen the event-driven
consistent update definition. We define strong update as an
update C1

e−→ C2 such that immediately after the event e
occurred, the network processes all incoming packets in C2.
We obtain the following lemma by the same reasoning as the
previous one.

Lemma 2. It is impossible to implement strong updates and
guarantee that every packet is processed by a switch within
an a priory given time bound.

Event-driven Network Programming 5 2016/1/23



Figure 2: Event-driven transition systems.

3. Programming with Events
This section introduces an intuitive method for build-

ing NESs using transition systems where nodes correspond
to configurations and edges correspond to events. We also
present a network programming language based on NetKAT
that provides a compact notation for specifying both transi-
tion systems and the configurations at each node.
3.1 Event-driven Transition Systems
Definition 6 (Event-driven Transition System). An event-
driven transition system (ETS) is a graph (V,D, v0), where
V is a set of vertices, where each vertex is labeled by a
configuration C; D ⊆ V × V is a set of edges, where each
edge is labeled by an event e; and v0 is the initial vertex.

Consider the ETSs shown in Figure 2 (a-b). In (a), the
two events are intuitively compatible—they can happen in
any order, so we obtain a correct execution if both happen
in different parts of the network and different switches can
have a different view of the order in which they happened.
In (b), the two events are intuitively incompatible—only one
of them can happen in any particular execution. Therefore
even if they happen nearly simultaneously, only one of them
should take an effect. To implement this, we need the lo-
cality restriction—we need to check whether the two events
happen at the same switch. We thus need to distinguish be-
tween the two ETSs in Figure 2, parts (a) and (b) to deter-
mine where locality restrictions must be imposed in the con-
version from an ETS to an NES.
From ETSs to NESs. To convert an ETS to an NES, we first
form the event sets (as in Definition 4) and then construct
the enabling relation and consistency predicate. We assume
that the ETS is loop-free. Given an ETS T , consider the set
Wp(T ) of paths in T from the initial node to any vertex. For
each path p ∈Wp(T ), let S(p) be the set of events collected
along the path. The set F (T ) = {S(p) | p ∈ Wp(T )} is our
candidate collection of event sets. We now define conditions
under which F (T ) gives rise to a network event structure.
These conditions can be checked for T using straightforward
graph algorithms, and any problematic vertices or edges in
the ETS can be indicated to the programmer.
1. We require that each set S in F (T ) must correspond to

exactly one network configuration. This holds if all paths
in Wp(T ) corresponding to S end at states labeled with
the same configuration.

2. We require that F (T ) is finite-complete, i.e. for any sets
S1, S2, · · · , Sn where Si ∈ F (T ), if there is a set S′ ∈
F (T ) which contains every Si (an upper bound for the
sets Si), then the set Slub = ∪iSi (the least upper bound

for the Si) is also in F (T ). For example, consider the
ETS in Figure 2(c), which violates this condition since
the event-sets S1 = {e1} and S2 = {e3} are both
subsets of {e1, e4, e3}, but there is no event-set of the
form S1 ∪ S2 = {e1, e3}.

In [37], such a collection F (T ) is called a family of config-
urations. Our condition #2 is condition (i) in Theorem 1.1.9
in [37] (conditions (ii)-(iii) are already satisfied by the ETS).

We build the con and ` relations of an event structure
from the family F (T ), using Theorem 1.1.12. of [37]. Pred-
icate con can be defined by declaring all sets in F (T ) as
consistent. For `, we take the smallest relation satisfying the
constraints: ∅ ` e ⇐⇒ {e} ∈ con and X ′ ` e ⇐⇒
(X ′ ∈ con) ∧ ((X ′ ∪ {e}) ∈ F ∨ (∃X ⊆ X ′ : X ` e)).

After obtaining an NES, deciding where to check the
locality restriction is easy: we check whether the NES is
locally determined (see Section 2), and verify for each
minimally-inconsistent set that the locality restriction holds.
Loops in ETSs. If there are loops in the ETS T , the previous
definition needs to be slightly modified because we need to
rename events encountered multiple times in the same ex-
ecution. This gives rise to an NES where each event-set is
finite, but the NES itself might be infinite (and thus can only
be computed lazily). If we have the ability to store/com-
municate unbounded (but finite) event-sets in the network
run-time, then no modifications are needed to handle infinite
NESs in the implementation. Otherwise, we can handle these
by computing the strongly-connected components (SCCs) of
the ETS, enforcing the locality restriction on events in each
(non-singleton) SCC, and requiring the implementation to
attach timestamps on occurrences of events in those SCCs.
3.2 Stateful NetKAT

NetKAT [2] is a domain-specific language for specifying
network behavior. It has a semantics based on Kleene Alge-
bra with Tests (KAT), and a sound and complete equational
theory that enables formal reasoning about programs. Op-
erationally, a NetKAT program can be modeled as a func-
tion takes as input a single packet, and uses tests, field-
assignments, sequencing, and union to produce a set of “his-
tories” corresponding to packet traces.

Standard NetKAT does not support mutable state. Ev-
ery packet is processed in isolation using the static func-
tion described by the program. Thus, we can use a standard
NetKAT program for specifying individual network config-
urations, but not event-driven configuration changes. We de-
scribe a stateful variant of NetKAT which allows us to com-
pactly specify a collection of network configurations, as well
as the event-driven relationships between them. This variant
preserves the existing equational theory of individual con-
figurations (though it is not a KAT itself), but also allows
packets to affect processing of future packets in the network
via assignments to (and tests of) a global state.

The syntax of Stateful NetKAT is shown in Figure 4. A
Stateful NetKAT program is a command, which can be
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Lf =© nM~k ϕ , ({}, {ϕ ∧ f=©n})
Lsw =© nM~k ϕ , LtrueM~k ϕ

Lport =© nM~k ϕ , LtrueM~k ϕ

Lstate(m) =© nM~k ϕ ,

{
LtrueM~k ϕ if ~k(m)=©n

LfalseM~k ϕ otherwise

Lf ← nM~k ϕ , ({}, {(∃f : ϕ) ∧ f=n})
Lp+ qM~k ϕ , (LpM~k ϕ) t (LqM~k ϕ)

Lp ; qM~k ϕ , (LpM~k ‚ LqM~k) ϕ
Lp∗M~k ϕ ,

⊔
j F

j
p (ϕ,~k)

La ∧ bM~k ϕ , La ; bM~k ϕ

La ∨ bM~k ϕ , La+ bM~k ϕ

LtrueM~k ϕ , ({}, {ϕ})
LfalseM~k ϕ , ({}, {})

L¬trueM~k ϕ , LfalseM~k ϕ

L¬falseM~k ϕ , LtrueM~k ϕ

L¬(v =© n)M~k ϕ , Lv 6=© nM~k ϕ

L¬¬aM~k ϕ , LaM~k ϕ

L¬(a ∧ b)M~k ϕ , L¬a ∨ ¬bM~k ϕ

L¬(a ∨ b)M~k ϕ , L¬a ∧ ¬bM~k ϕ

L(s1:p1) _ (s2:p2)M~k ϕ , ({}, {ϕ})
L(s1:p1) _ (s2:p2) _ 〈state(m)← n〉M~k ϕ , ({(~k, (ϕ, s2, p2), ~k[m 7→ n])}, {ϕ})

Figure 3: Stateful NetKAT: Extracting event-edges from state ~k.

f ∈ Field (header-field name)
x ::= f | pt (scalar variable)
a, b ::= true | false | x = n | sw=n | state(n) = n (test)

| a ∨ b | a ∧ b | ¬a
p, q ::= a | x← n | p+ q | p ; q | p∗ | (n:n) _ (n:n) (command)

| (n:n) _ (n:n) _ 〈state(n)← n〉

Figure 4: Stateful NetKAT: Syntax.

Jstate(m)=nK~k ,

{
JtrueK~k if ~k(m)=n

JfalseK~k otherwise

J(a:b) _ (c:d) _ 〈state(m)← n〉K~k , J(a:b) _ (c:d)K~k

Figure 5: Stateful NetKAT: Extracting NetKAT Program for state ~k.

• a test, which is a formula over packet header fields (there
are special fields sw and pt which test the switch- and
port-location of the packet respectively),

• a field assignment x←n, which changes a packet’s
header-field value,

• a union of commands p + q, which unions together the
packet-processing behavior of commands p and q,

• a command sequence p ; q, which runs packet-processing
program q on the result of p,

• an iteration p∗, which is equivalent to true+p+(p ; p)+
(p ; p ; p) + · · · ,

• or conditional forwarding (n1:m1)_(n2:m2), which
forwards a packet from port m1 at switch n1 to port m2

at switch n2.
The key distinguishing feature of our Stateful NetKAT is a
special global vector-valued variable called state, which al-
lows the programmer to represent a collection of NetKAT
programs. The function shown in Figure 5 gives the stan-
dard NetKAT program JpK~k corresponding to each value ~k
of the state vector (for conciseness, we only show the non-
trivial cases). We can use the NetKAT compiler [32] to gen-
erate forwarding tables (i.e. configurations) corresponding to
these, which we denote C(JpK~k).
3.3 Converting Stateful NetKAT Programs to ETSs

It is clear how the J · K~k function can produce the vertices
of an ETS. In Figure 3, we define another function L · M~k,

which produces the event-edges. This collects (using param-
eter ϕ) the conjunction of all guards seen up to a given pro-
gram location, and records a corresponding event-edge when
a state assignment command is encountered. In the figure,
the ‚ operator denotes (pointwise) Kleisli composition, i.e.
(f ‚ g) ,

⊔
{g y : y ∈ f x}, and function F is

F 0
p (ϕ,~k) , ({}, {ϕ})

F j+1
p (ϕ,~k) , (LpM~k ‚ F j

p ) ϕ

The symbol variable =© can be either equality “=” or in-
equality “6=”, and 6=© is the opposite symbol w.r.t. =©. Given
any conjunction ϕ and a header field f , the formula (∃f : ϕ)
strips all predicates of the form (f =© n) from ϕ.

Using fst to denote obtaining the first element of a tuple,
we can now produce the event-driven transition system for a
Stateful NetKAT program p with the initial state ~k0:

ETS (p) , (V,D, v0)

where V ,
⋃

~k{(~k,C(JpK~k))}
and D , fst

(⊔
~kLpM~k true

)
and v0 , (~k0, C(JpK~k0

)

4. Implementing Event-Driven Programs
Next we show how to implement NESs in a real SDN

and prove that it is correct—i.e. all traces followed by ac-
tual packets in the network should be correct with respect
to the Section 2 definition. To a first approximation, our im-
plementation can be understood as follows. We assume that
the switches in the network provide mutable state that can
be read and written as packets are processed. Given an NES,
we assign a tag to each event-set and compile a collection of
configurations whose rules are predicated on the appropriate
tags. We then add logic which (i) updates the mutable state
to record local events, (ii) stamps incoming packets with the
tag for the current event-set upon ingress, and (iii) reads the
tags carried by packets and updates the event-set at subse-
quent switches.
4.1 Building Blocks
Static Configurations. The NES contains a set of network
configurations that need to be installed as flow tables on
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Switch ID n ∈ N
Port ID m ∈ N
Host ID h ∈ N
Counter z ∈ N
Identifier i ∈ N

Packet pkt ::= (pid , {f1; · · · ; fk})
Location l ::= n : m
Queue Map qm ::= n 7→ pkts
Link lk ::= (l, l)
Links L ::= {lk, · · · }
Event e ::= (n, ϕ)

Configuration C ::= (pkt , n:m) 7→ {(pkt ,m)}
Event-set E ::= {e, · · · }
Enabling Relation ` ::= E 7→ E
Configuration Map g ::= E 7→ C
Switch sw ::= (n, qm,E, qm)
Queue, Controller Q,R ::= E
Switches S ::= {sw, · · · }

(h, n:m) ∈ L S = S′ ∪ {(n, qm[m 7→ pkts], E, qm2)}
(Q,R, S) −→ (Q,R, S′ ∪ {(n, qm[m 7→ pkts@[pktg(E)]], E, qm2)})

IN
(n:m,h) ∈ L S = S′ ∪ {(n, q1, E, qm[m 7→ pkt ::pkts])}

(Q,R, S) −→ (Q,R, S′ ∪ {(n, q1, E, qm[m 7→ pkts])})
OUT

C(pktC , n:m)={(m1, pkt1), · · · } E′={e:((E∪pkt .d)`e)∧(pkt , n:m)|=e} S=S′∪{(n, qm[m 7→pktC ::pkts], E, qm2[m1 7→pkts1, · · · ])}
(Q,R, S) −→ (Q∪E′, R, S′∪{(n, qm[m7→pkts], E∪E′∪pkt .d, qm2[m1 7→pkts1@[pkt1[d 7→pkt1.d∪E∪E′]], · · · ])})

SW

(n1:m1, n2:m2) ∈ L S = S′ ∪ {(n1, q1, E1, qm2[m1 7→ pkt ::pkts]), (n2, qm3[m2 7→ pkts′], E2, qm4)}
(Q,R, S) −→ (Q,R, S′ ∪ {(n1, q1, E1, qm2[m1 7→ pkts]), (n2, qm3[m2 7→ pkts′@[pkt ]], E2, qm4)})

LINK

Q = Q′ ∪ {o}
(Q,R, S) −→ (Q′, R ∪ {o}), S)

CTRLRECV
R = R′ ∪ {o} S = S′ ∪ {(n, qm,E, qm2)}

(Q,R, S) −→ (Q,R, S′ ∪ {(n, qm,E ∪ {o}, qm2)})
CTRLSEND

Figure 6: Implemented Program Semantics

switches. In addition, we may need to transition to a new
configuration in response to a local event. We do this proac-
tively, installing all of the needed rules on switches in ad-
vance, with each rule guarded by its configuration’s ID. This
has a disadvantage of being less efficient in terms of rule-
space usage, but an advantage of allowing very quick con-
figuration changes. In Section 5.3, we discuss an approach
to addressing the space-usage issue.
Stateful Switches. New switch-programming languages
such as P4 [5] and OpenState [4] are being actively de-
veloped, adding support for advanced functionality such as
customizable parsing, and arbitrary stateful registers. We as-
sume that the switches support reading and writing stateful
register(s) while processing each packet. This allows each
switch to maintain a local view of the global state. Specifi-
cally, the register records the set of events the device knows
have occurred. At any time, the device can receive a packet
(from the controller or another device) informing it of new
event occurrences, which are then added to the local register.
Packet Processing. Each packet entering the network is ad-
mitted from a host to a port at the edge. The configuration
number j corresponding to the device’s view of the global
state is assigned to the packet’s version number field. The
packet will processed only by j-guarded rules throughout
its lifetime. Packets also carry a digest encoding the set of
events seen so far (i.e. the packet’s view of the global state).
If the packet passes through an edge device which has seen
additional events, the packet’s digest is updated accordingly.
Similarly, if the packet’s digest contains events not yet seen
by the device, the latter adds them to its view of the state.
When a packet triggers an event, that event is immediately
added to the packet’s digest, as well as to the state of the
device where the event was detected. The controller is then
notified about the event. Optionally, the controller can peri-
odically broadcast its view of the global state to all switches,
in order to speed up dissemination of the state.

4.2 Operational Model
We formalize the above via an operational semantics for

the global behavior of the network as it executes a NES.
Each state in Figure 6 has the form (Q,R, S), with a

controller queue Q, a controller R, and set of switches S.
Both the controller queue and controller are a set of events.
Each switch s ∈ S is a tuple (n, qin, E, qmout), where n
is the switch ID, qmin, qmout are the input/output queue
maps (mapping port IDs to packet queues). The event-set E
represents this switch’s view of what events have occurred.
• IN/OUT: move a packet between a host and edge port;
• SW: process a packet by first adding new events from

the packet’s digest to the local state, then checking if the
packet’s arrival matches an event e enabled by the NES
and updating the state and packet digest if so, and finally
updating the digest with other local events;

• LINK: move packets across a link;
• CTRLRECV: bring an event occurrence from the con-

troller queue into the controller;
• CTRLSEND: update local state of the switches.

4.3 Correctness of the Implementation
We now prove the correctness of our implementation.

Formally we show that the traces allowed by the operational
semantics are correct traces, as defined in Section 2.

Lemma 3 (Global Consistency). Given network event
structure N , if the locality restriction is satisfied,
then given an execution of the implementation t =
(Q1, R1, S1)(Q2, R2, S2) · · · (Qm, Rm, Sm), the event-set
X = Qi ∪Ri is consistent for all 1 ≤ i ≤ m.

Proof Sketch. We first show (by contradiction) that if there is
no nonderminism in the N (i.e. a case such as Figure 2(a)),
then X ∪ {e} is consistent for all e and any X ∈ N .

Otherwise, we assume that the implementation adds an e0
to some consistent event-set X , producing an inconsistent
set. We look at the minimally-inconsistent set Y ⊆ (X ∪
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{e0}), and notice that the locality restriction requires all e ∈
Y be detected at the same switch, resulting in |Y | ≤ 1, and
generating a contradiction, since Y is then consistent.

Traces of the Implementation. Note that we can readily fol-
low the path of a single packet throughout an implementa-
tion trace (at most one packet moves at each step of Figure
6). Given an implementation trace t, we overload the no-
tation Traces(t) to denote the set of all such single-packet
traces in t. We now present the main result of this section—
executions of the implementation allow only correct traces.

Theorem 1 (Implementation Correctness). For NES N , and
execution t = (Q1, R1, S1)(Q2, R2, S2) · · · (Qi, Ri, Si) of
the implementation, each packet trace in Traces(t) is cor-
rect with respect to N .

Proof Sketch. The proof is by induction over the length of
the execution t. In the induction step, we show that (1) the
SW rule can only produce consistent event-sets (this follows
directly from Lemma 3), and (2) when the IN rule tags a
packet pkt based on the local event-set E, that E consists
of exactly the events that happened before pkt arrived (as
ordered by the happens-before relation).

5. Implementation and Evaluation
We built a full-featured prototype implementation:

• We implemented the compiler described in Section 3.
This tool accepts a Stateful NetKAT program, and pro-
duces the corresponding NES, with a standard NetKAT
program representing the configuration at each node. We
interface with Frenetic’s NetKAT compiler to produce
flow-table rules for each of these NetKAT programs.

• We have modified the OpenFlow 1.0 reference imple-
mentation to support the custom switch/controller needed
to realize the runtime described in Section 4.

• We have built tools to automatically generate custom
Mininet [22] scripts to bring up the programmer-specified
network topology, using switches/controller running the
compiled NES. We can then realistically simulate the
whole system using real network traffic.

Research questions. To evaluate our approach, we wanted to
obtain answers to the following questions:
1. How useful is our approach? Does it allow programmers

to easily write real-world network programs, and get the
behavior they want?

2. What is the performance of the tools (compiler, etc.)?
3. How much does our correctness guarantee help? For in-

stance, how do the running network programs compare
with “best-effort” event-driven strategies?

4. How efficient are the implementations generated by our
approach? For instance, what about message overhead?
State-change convergence time? Number of rules used?

We address these through case studies on real-world pro-
gramming examples, and quantitative performance measure-
ments on simple automatically-generated programs. For the

experiments, we assume that the programmer has first con-
firmed that the program satisfies the conditions allowing
proper compilation to an NES, and we assume the ETS has
no loops. Our experimental platform was an Ubuntu machine
with 20GB RAM and a quad-core Intel i5-4570 (3.2 GHz).
5.1 Case Studies
Stateful Firewall. The example in Figures 7-11(a) is a sim-
plified stateful firewall. It always allows “outgoing” traffic
(from H1 to H4), but only allows “incoming” traffic (from
H4 to H1) after the outside network has been contacted (out-
going forwarded to H4).

Program p corresponds to configurations C[0] = JpK[0]
and C[1] = JpK[1]. In the former, only outgoing traffic is
allowed, and in the latter, both outgoing and incoming are

allowed. The ETS has the form {〈[0]〉 (dst=H4, 4:1)−−−−−−−−−→ 〈[1]〉}.
The NES has the form {E0=∅ → E1={(dst=H4, 4:1)}},
where the g is given by g(E0) = C[0], g(E1) = C[1].

The Stateful Firewall example took 0.013s to compile,
and produced a total of 18 flow-table rules. In Figure 8(a),
we show that the running firewall has the expected behavior.
We first try to ping H1 from H4 (the “H4-H1”/red points),
which fails. Then we ping H4 from H1 (the “H1-H4”/orange
points), which succeeds. Again we try H4-H1, and now this
succeeds, since the event-triggered state change occurred.

We compare this correct behavior with that of a “best-
effort” update strategy, in which events are sent to the con-
troller, which pushes updates to the switches at its conve-
nience. The results are in Figure 8(b), showing that some
of the H1-H4 pings get dropped (i.e. H1 doesn’t hear back
from H4), meaning the state change did not behave as if it
was caused immediately upon arrival of a packet at S4.
Learning Switch. The example in Figures 7-11(b) is a sim-
ple learning switch. Traffic from H4 to H1 is flooded (sent
to both H1 and H2), until H4 receives a packet from H1, at
which point it “learns” the address of H1, and future traffic
from H4 to H1 is sent only to H1.

This program p corresponds to two configurations C[0] =
JpK[0] and C[1] = JpK[1]. In the former, flooding occurs from
H4, and in the latter, packets from H4 are forwarded directly

to H1. The ETS has the form {〈[0]〉 (dst=H4, 4:1)−−−−−−−−−→ 〈[1]〉}.
The NES has the form {E0=∅ → E1={(dst=H4, 4:1)}},
where the g is given by g(E0) = C[0], g(E1) = C[1].

This only allows learning a single host (H1), but we
could easily add learning for H2 by using a different index
in the vector-valued state field: we could replace state in
Figure 11(b) with state(1), and union the program (using the
NetKAT + operator) with another instance of Figure 11(b)
which learns for H2 and uses state(2).

The Learning Switch example took 0.015s to compile,
and produced a total of 43 flow-table rules. We again com-
pare the behavior of our correct implementation with that of
an implementation which uses a best-effort update strategy.
In Figure 9, we ping H1 from H4. The expected behavior is
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(a) (b) (c)
Figure 7: Topologies: (a) firewall, (b) learning switch, (c) port knocking.

(a)

(b)

(c)

pt=2 ∧ ip_dst=H4; pt←1; (state=[0];
(1:1)_(4:1)_〈state←[1]〉 + state6=[0];
(1:1)_(4:1)); pt←2

+ pt=2 ∧ ip_dst=H1; state=[1]; pt←1;
(4:1)_(1:1); pt←2

pt=2 ∧ ip_dst=H1; (pt←1; (4:1)_(1:1) +
state=[0]; pt←3; (4:3)_(2:1)); pt←2

+ pt=2 ∧ ip_dst=H4; pt←1; (1:1)_(4:1)_〈
state←[1]〉; pt←2

+ pt=2; pt←1; (2:1)_(4:3); pt←2

state=[0] ∧ pt=2 ∧ ip_dst=H1; pt←1;
(4:1)_(1:1)_〈state←[1]〉; pt←2

+ state=[1] ∧ pt=2 ∧ ip_dst=H2; pt←3;
(4:3)_(2:1)_〈state←[2]〉; pt←2

+ state=[2] ∧ pt=2 ∧ ip_dst=H3; pt←4;
(4:4)_(3:1); pt←2

+ pt=2; pt←1; ((1:1)_(4:1) + (2:1)_(4:3) +
(3:1)_(4:4)); pt←2

Figure 11: Programs: (a) firewall, (b) learning switch, (c) port knocking.
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Figure 8: Stateful Firewall—Correct (left) vs. Incorrect (right)
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Figure 9: Learning Switch: Correct (left) vs. Incorrect (right)
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Figure 10: Port Knocking: Correct (left) vs. Incorrect (right)

shown on the left, where the first packet is flooded to both
H1 and H2, but then H4 hears a reply from H1, causing the
state change (i.e. learning the address of H1), and all subse-
quent packets are sent only to H1. On the right, however, if
the state change is delayed, multiple packets are sent to H2,
even after H4 has seen a reply from H1.

Port Knocking. In this example, shown in Figures 7-11(c),
the untrusted host H4 wishes to contact H3, but can only do
so after contacting H1 and then H2, in that order.

This program p corresponds to three configurations:
C[0] = JpK[0] in which only H4-H1 traffic is en-
abled, C[1] = JpK[1] in which only H4-H2 traffic
is enabled, and C[2] = JpK[2] which finally allows
H4 to communicate with H3. The ETS has the form
{〈[0]〉 (dst=H1, 1:1)−−−−−−−−−→ 〈[1]〉 (dst=H2, 2:1)−−−−−−−−−→ 〈[2]〉}. The
NES has the form {E0=∅ → E1={(dst=H1, 1:1)} →
E2={(dst=H1, 1:1), (dst=H2, 2:1)}}, where the g func-
tion is given by g(E0) = C[0], g(E1) = C[1], g(E2) = C[2].

The Port Knocking example took 0.017s to compile, and
produced a total of 72 flow-table rules. In Figure 10 we
demonstrate the correct behavior of the program, by first
trying (and failing) to ping H3 and H2 from H4, then suc-
cessfully pinging H1, again failing to ping H3 (and H1),
and finally succeeding in pinging H3. The incorrect (best-
effort) implementation on the left allows an incorrect behav-
ior where we can successfully ping H1 and then H2, but then
fail to ping H3 (at least temporarily).
5.2 Quantitative Results

In this experiment, we automatically generated some
event-driven programs which specify that two hosts H1 and
H2 are connected to opposite sides of a ring of switches.
Initially, traffic is forwarded clockwise, but when one of the
switches detects a (packet) event, the configuration changes
to forward counterclockwise. We increased the “diameter”
of the ring (distance from H1 to H2) up to 8, as shown in
Figure 12, and performed two experiments:
1. We used iperf to measure H1-H2 TCP/UDP band-

width, and compared the performance of our running
event-driven program, versus that of the initial (static)
configuration of the program running on un-modified
OpenFlow 1.0 reference switches/controller. The left side
of the figure shows that our performance (solid line) is
very close to performance of a system which does not to
packet tagging, event detection, etc. (dashed line)—we
see around 6% performance degradation on average.

2. We measured maximum and average time needed for a
switch to learn about the event. The “Max.” and “Avg.”
bars in the right of the figure are these numbers when the
controller does not assist in disseminating the events (i.e.
only the packet digest is used), and the other columns are
the maximum and average when the controller does so.
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Figure 12: Circular Example (solid line is ours, dotted line is reference
implementation)
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Figure 13: Polynomial heuristic to reduce the number of inserted rules

5.3 Optimizations
We provide an effective approach for reducing rule space

usage: for example, if the same rule r is to be used in two
different configurations with state IDs 2 (binary 10) and 3
(binary 11), we can simply wildcard the lowest bit (1∗) for
use as a guard, instead of keeping r in both states, with
the “10” and “11” guards. When IDs are being assigned
to different configurations, it is non-obvious which assign-
ment gives maximal sharing of this form. We implemented
a polynomial heuristic to provide (re-)assignments that give
good sharing, as indicated by the Figure 13 (64 randomly-
generate configurations w/ 20 rules) results. On average, rule
savings was about 32% of the original number of rules. We
also ran this on the previously-discussed Firewall, Learning
Switch, and Port Knocking examples, and got rule reduc-
tions of 18→ 16, 43→ 27, and 72→ 46 respectively.

6. Related Work
Network updates. We have already briefly mentioned an
early approach known as consistent updates [31]. This work
was followed by update techniques that respect other cor-
rectness properties [24] [16] [39] [25]. These approaches for
expressing/verifying correctness of network updates work in
terms of individual packets.

In event-driven network programs, it is necessary to
check properties which talk about interactions between mul-
tiple packets. There are several current directions which seek
to do network updates in the context of multi-packet proper-
ties, e.g. [11] and [23]. There are also approaches for synthe-
sizing SDN controller program from multi-packet examples
[38], and from specifications in first-order logic [30].

Network programs can often be constructed using high-
level languages. The Frenetic project [9] [26] [10] allows
higher-level specification of network policies. Other related
projects such as Merlin [33] and NetKAT [32] [3] provide
high-level languages and tools to compile such programs to

network configurations. Works such as Nettle, [34], Procera
[35], Maple [36], and FlowLog [29] seek to address the
dynamic aspect of network programming.

None of these systems and languages provide both (1)
event-based constructs, and (2) strong semantic guarantees
about consistency during updates, while our framework en-
ables both. Our approach is unique in that we enable correct-
by-construction event-based behavior, providing a dynamic
correctness property that is strong enough for easy reason-
ing, yet flexible enough to enable efficient implementations.
Routing. The trade-off between consistency and availabil-
ity is of interest in routing outside of the SDN context as
well. In [17], a solution called consensus routing, based on a
notion of causality between triggers (related to our events).
However, the solution is different in many aspects: for in-
stance it allows a transient phase without safety guarantees.
Implementing High-level Network Functionality. Some re-
cent work has proposed putting even more powerful fea-
tures into the network itself, such as fabrics [8], intents
[1], and other virtualization functionality [21]. Pyretic [27]
and projects built on top of it such as PyResonance [19],
SDX [13], and Kinetic [20] provide high-level operations
on which network programs can be built. These projects do
not guarantee consistency during updates, and thus could be
profitably combined with our approach.

7. Discussion and Future Work
This research opens up several directions for future work

that can address limitations of our current system. First, we
assume that the set of (potential) hosts is known in advance,
and use this information to generate the corresponding flow
tables for each switch. This may not be the right choice in
settings where hosts join and leave. The approach can be ex-
tended to represent hosts symbolically. Second, we currently
store all configurations at switches, so they are immediately
available during updates. Our optimizations allow this to be
done in a space-efficient way, but there may be situations
when it would be better for the controller to reactively push
new configurations to switches. This is an interesting prob-
lem due to interleavings of events and controller commands.
Third, we leave issues such as formal reasoning and auto-
mated verification for Stateful NetKAT for future work.

8. Conclusion
This paper presents a full framework for correct event-

driven programming. Our approach provides a way of rig-
orously defining correct event-driven behavior without the
need for specifying logical formulas. We detail a program-
ming language and compiler which allow the user to write
high-level network programs and produce correct and effi-
cient SDN implementations, and we demonstrate the bene-
fits of our approach using real-world examples. This paper
considers the challenging problem of distributing an event-
based network program, and solves it in a principled way.
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