Proving Properties of Programs by Structural
Induction

by R. M. Burstall
(The Computer Journal, 1969)

presented by
Jedidiah R. McClurg

Northwestern University

October 25, 2011

presented by Jedidiah McClurg Structural Induction by R. M. Burstall

Introduction and Some Background

Why are we talking about proofs?

@ The need for proofs of software correctness is becoming
increasingly important.
@ Airline industry
e Automotive industry

e Ultimately, we wish to automate the generation and/or
checking of such proofs.

@ Imperative languages such as C are especially difficult to
reason about.

Simple C Code Trickier C Code
int a = 0; int a = 0;
int b = a + 1; a=a+tl;

int b = a;

presented by Jedidiah McClurg Structural Induction by R. M. Burstall

Functional Programming

How can we address these needs/difficulties?
Functional programming is one approach.

@ This paper presents the language ISWIM, which is very similar
to the modern language OCaml
@ These have the following nice features:
e Lambda calculus-style "let” bindings
let a = 0 in
let b=a + 1 in
a + b;;
o Algebraic data types (ADT)
type tree = Tree of tree * int * tree | Leaf of int;;
o Powerful expression-matching (important for the recursive
paradigm)
match t with

| Leaf(i) -> print_string "found a leaf"
| Tree(t1,i,t2) -> (* recursively process tl,t2 *)

presented by Jedidiah McClurg Structural Induction by R. M. Burstall

Modeling Things Recursively

To take advantage of these nice features of functional
programming, we must think recursively rather than iteratively!

@ For example, consider the following simple algorithm to print
each item in a list:

void print_list(int *1, int len) {
for(int i = 0; i < len; i++) {
printf("%d ", 1[i]);

}
@ How would we do this recursively?

let rec print_list 1 =
match 1 with

I ->0
| a::ax —>
print_int a; print_string " "; print_list ax

0

presented by Jedidiah McClurg Structural Induction by R. M. Burstall

The idea is that proofs regarding a recursively-structured program
look very similar to the program itself (i.e. they are relatively
straightforward to obtain)!

@ First, we introduce some preliminaries used in the paper.

@ Second, we present the idea of structural induction.

@ Third, we show how to prove things via structural induction.
°

Fourth (and finally), we examine some properties of an
interesting sorting algorithm

presented by Jedidiah McClurg Structural Induction by R. M. Burstall

Preliminaries

e We consider every expression in the (functional) program to
be either an atom or a structure (i.e. an object built up from
atoms).

@ We can build structures using construction operations.

@ Each construction operation has the following associated
functions:

e A constructor function to build up a new structure
e A destructor function to get components of a structure
o A predicate function to test for atomicity

@ We define a constituent relation < recursively as follows:
A< Biff B=Aor A< b for some b € components(B)

(note that this a partial order).

presented by Jedidiah McClurg Structural Induction by R. M. Burstall

A Basic Induction Principle

Here is the familiar induction principle:

Theorem (Induction)

Given a predicate P(n) with n € N, if we have
@ P(0) is true
@ P(k) = P(k+1) for arbitrary k > 0,
then P(n) is true for all n € N.

This is a straightforward proof by contradiction (assume P(j) is
false for some j > 0 and see what happens). [

<

presented by Jedidiah McClurg Structural Induction by R. M. Burstall

Stronger Induction Principle

Sometimes strengthening the induction hypothesis allows us to
prove things more easily:

Theorem (Strong Induction)

Given a predicate P(n) with n € N, if we have

Q@ P(0) is true

Q (Vj < k,P(k)) = P(k+1) for arbitrary k > 0,
then P(n) is true for all n € N.

This is similar to the proof of the basic induction principle.

presented by Jedidiah McClurg Structural Induction by R. M. Burstall

Structural Induction Principle

Induction is not limited to predicates of natural numbers. Consider
the Structural Induction principle, as put forth in Burstall's paper:

Theorem (Structural Induction)

Given a set S of structures and a property P(s) fors € S, if we
have

(Vc € constituents(s), P(c)) = P(s) for arbitrary s € S,

then P(s) is true for all s € S. (Note the "hidden” base case!)

This proof follows the same line of reasoning as the other induction
principles. Structures are built up using finitely many construction
operations.]

presented by Jedidiah McClurg Structural Induction by R. M. Burstall

Simple Proofs Using Structural Induction

Now, we are ready to begin proving things about recursive
programs. Let's consider the following LISP-like constructs:

@ nil: a null atom

@ cons: concatenate (i.e. join together a car and cdr)
@ car: get first item (i.e. destruct a cons)

@ cdr: get remainder of cons

We can do list operations with these, e.g.

cons(a,cons(b,cons(c,nil)))
car(cons(d,nil))

presented by Jedidiah McClurg Structural Induction by R. M. Burstall

Simple Proofs Using Structural Induction (Cont.)

Calling cons and nil by their more common names :: and [], we
can define some useful recursive functions:

let rec concat xsl xs2 =

match xsl1 with

| [0 —> xs2

| x::xs -> x::(concat xs xs2) ;;

let rec 1lit f xsl1 y =

match xsl1 with

I [0 >y

| x::xs => f x (lit £ xs y) ;;

Note that the second function is similar to OCaml’s fold
function(s).

presented by Jedidiah McClurg Structural Induction by R. M. Burstall

Simple Proofs Using Structural Induction (Cont.)

Let's prove something about these functions.

Theorem (Fold and Concat)
(lit f (concat xs1 xs2) y) = (lit fxs1 (lit f xs2y))

Proof.
We begin the proof with induction on the structure of xs1. Since
there is only one atom (nil) and one constructor (cons), we have
two choices for the structure of xsl
© xsl is of the form nil
e We can simply expand the definitions to get
(lit f xs2 y) = (lit f xs2 y)
@ xsl is of the form x::xs
e Here our induction hypothesis states that the theorem holds
for xs. We proceed as follows...

Ol

presented by Jedidiah McClurg Structural Induction by R. M. Burstall

Simple Proofs Using Structural Induction (Cont.)

Theorem (Fold and Concat, Continued)
(lit f (concat xs1 xs2) y) = (lit f xs1 (lit f xs2 y))

@ We can transform the LHS of the theorem into
(lit f (x :: (concat xs xs2)) y) by the definition of concat

@ We can further transform this into
(f x (lit f (concat xs xs2) y)) by the definition of lit.

@ Now, we can transform the RHS of the theorem into
(f x (lit f xs (lit f xs2, y))) by the definition of lit.

@ We can further transform this into
(f x (lit f (concat xs xs2) y)) by applying our inductive
hypothesis in regards to xs.

@ Thus, LHS = RHS.

presented by Jedidiah McClurg Structural Induction by R. M. Burstall

More Interesting Proofs

Consider the following implementation of Merge Sort:

let rec merge al bl = match (al,bl) with
| (01,00 =>bl | (,,[0) —> al
| (a::ax,b::bx) ->
(if (a < b) then a::(merge ax bl) else
b::(merge al bx)) ;;

let rec mergesort 1 = match 1 with
0O ->0 1 a::[1 —>1
| a ->
let (left, right) = split a in
let 1s = mergesort left in
let rs = mergesort right in
merge 1s rs ;;

Prove that merge returns a sorted list when given two sorted lists.

presented by Jedidiah McClurg Structural Induction by R. M. Burstall

More Interesting Proofs (Cont.)

The paper goes on to prove the correctness of a tree sorting
algorithm, and a small compiler for a simple stack-based machine.
All of these proofs adhere to the following paradigm:

@ Represent your data and operations as algebraic data types
and recursive constructor functions.

@ To prove a property about all data, prove the property for
atomic data and then prove the property under the
assumption that it holds for subdata.

presented by Jedidiah McClurg Structural Induction by R. M. Burstall

Conclusion

@ Structural induction is a useful method of proving things
about recursive programs.

@ Functional programming is a usable and natural way to define
and reason about programs via structural induction.

presented by Jedidiah McClurg Structural Induction by R. M. Burstall

presented by Jedidiah McClurg Structural Ind

