
Virtual Machine Support for
Parallel Language Runtimes

EECS 441 Class Project
Final Presentation

Jedidiah McClurg Kaicheng Zhang Yixi Zhang

Northwestern University

May 30, 2012

Jedidiah McClurg, Kaicheng Zhang, Yixi Zhang VM Support for Parallel Runtimes



Introduction

1 2

Parallelism is an imporant aspect of modern computing

Machines offer anywhere from 4 to 200,000+ cores

Programs should exploit this parallelism when possible

Programming languages are beginning to offer built-in
constructs which allow programmers to do this

What exactly is needed at the OS and (virtual) machine
level to support the runtime for such a language?

1http://www.pcmag.com/
2http://www.nccs.gov/

Jedidiah McClurg, Kaicheng Zhang, Yixi Zhang VM Support for Parallel Runtimes



Project Goals

We seek to obtain concrete answers to this question by doing
the following:

1 Identify a minimalist environment which could conceivably
support a parallel language runtime

2 Port the Racket language runtime to this minimal OS

3 Add necessary OS-level functionality to support Racket’s
parallelism constructs

4 Test the setup running on a virtual machine

This will provide us with an understanding of the features that
are unique to parallel language runtimes, and point us towards
ways of improving the cooperation between the OS/hardware
and the runtime.

Jedidiah McClurg, Kaicheng Zhang, Yixi Zhang VM Support for Parallel Runtimes



Kitten Operating System

We target the Kitten OS 3 for running Racket

Kitten is a lightweight kernel (LWK) based on Linux

Designed for running on supercomputer nodes
Small, manageable code base
No support for physical disks (only virtual file system)
Provides support for Pthreads
Using Palacios VMM, can function as a host OS
Runs as a guest in VirtualBox, QEMU

Our first goal is to get Racket running on this OS

3https://software.sandia.gov/∼ktpedre/kitten overview.pdf
Jedidiah McClurg, Kaicheng Zhang, Yixi Zhang VM Support for Parallel Runtimes



Racket Runtime

Racket is a functional programming language in the
LISP/Scheme family

Programs can be compiled to bytecode (to run on the Racket
VM)

Racket supports JIT compilation

Racket also includes an interpreter (we focus on this)

The racket command accepts either console input via the
interactive read-eval-print loop, or input from source files

The language now supports two parallelism constructs

Futures [1], which allow independent computations to be run
in parallel within the (single-threaded) Racket VM
Places [2], which allow message-passing, and basically operate
in new instances of the Racket VM

Jedidiah McClurg, Kaicheng Zhang, Yixi Zhang VM Support for Parallel Runtimes



Project Overview

This is a list of things we had to do to accomplish our goals:

Compile Racket as a static binary and connect it with the
Kitten ISO image

Add support for console input in Kitten

Add support for instantiating a directory tree in the Kitten
VFS (Racket collections)

Implement needed system calls in Kitten

Debug Racket memory issues

Implement pipes in Kitten

Test Racket running in a Kitten guest on top of Palacios

Jedidiah McClurg, Kaicheng Zhang, Yixi Zhang VM Support for Parallel Runtimes



Static Racket Binary

Kitten does not have straightforward support for shared
libraries

Thus, we compiled Racket from source and statically linked
with libc, etc.

The Kitten build generates an ISO image which can be run in
a VM

Kitten packages a given init task program into the ISO
image, so we pointed the build to our static Racket binary

The Kitten build configuration allows a set of command line
options to be passed to the init task on startup, so we can
use this to specify a Racket source file, etc.

Jedidiah McClurg, Kaicheng Zhang, Yixi Zhang VM Support for Parallel Runtimes



Kitten Console Read

Kitten previously had console write, but no read
We want to use Racket interactively, so we added this support

Keyboard interrupts are intercepted by the keyboard driver
Key-codes are processed to determine characters, and
characters are sent to console support
Console support adds characters to the input buffer (spinlocks
used for thread safety)
Console reads are satisfied from the input buffer

Jedidiah McClurg, Kaicheng Zhang, Yixi Zhang VM Support for Parallel Runtimes



Racket Collections and the Kitten VFS

Kitten does not support physical disk drives, meaning all
filesystem access is via the memory-resident virtual file system
(VFS)
Racket requires a set of pre-compiled Racket libraries to start
up
Running it with “racket --collects /tmp/racket” loads
these libraries from /tmp/racket
How can we store these (1000+) files in /tmp/racket within
Kitten?
Embed them into the binary, and extract upon startup:

Running above racket command with “-expandblob” now
does this extraction

Jedidiah McClurg, Kaicheng Zhang, Yixi Zhang VM Support for Parallel Runtimes



Kitten Pipes

Kitten previously had no support for pipes, which are needed
by Racket’s parallelism constructs

Each of a task’s open files now includes an optional pointer to
a pipe structure
The pipe system call creates a pipe structure, and two
regular files in the VFS which point to it
For FDs which correspond to pipes, reads/writes from/to it
are satisfied from the pipe buffer

Jedidiah McClurg, Kaicheng Zhang, Yixi Zhang VM Support for Parallel Runtimes



Racket Memory Issues

Even with all the preceding functionality in place, Racket was
segfaulting (and failing to start) on Kitten

We verified that the segfault occured on our host OS as well
(using gdb), but it did not prevent Racket from starting on
that machine

We noticed that the previous Kitten page fault handler
generated an unrecoverable error

In an attempt to fix the problem, we modified the Kitten page
fault handler to instead send the SIGSEGV signal to the
offending task (Racket has a SIGSEGV handler)

This allowed Racket to initialize further, but a subsequent
segfault caused the task to hang

Finally, we switched from the Racket 3M garbage collector to
the conservative garbage collector (CGC), and this solved the
problem

Jedidiah McClurg, Kaicheng Zhang, Yixi Zhang VM Support for Parallel Runtimes



Results / Demo

We are able to run Racket interactively on top of a Kitten
VirtualBox (or Palacios) guest

Futures and places operate as expected

We can successfully run the following simple Racket demo
programs

(let ([x 12345])
(begin (print x) (begin (printf ”\nHello from Racket\n”)

”This is the return value\n”)))

#lang racket
(let ([f (future (lambda () (+ 1 2)))]) (print (list (+ 3 4) (touch
f))))

(let ([pls (for/list ([i (in-range 2)]) (dynamic-place

”tmp/racket/place-worker.rkt” ’place-main))]) (for ([i (in-range 2)]

[p pls]) (place-channel-put p i) (printf ”>>>Place message: a\n”

(place-channel-get p))) (map place-wait pls))

Jedidiah McClurg, Kaicheng Zhang, Yixi Zhang VM Support for Parallel Runtimes



Conclusion

We have demonstrated that it is possible to port a parallel
language runtime to a minimal OS

More generally, we have demonstrated that parallel language
runtimes can be supported with only a minimal set of OS
functionalities, namely threads and pipes, etc.

We have also shown that a parallel language runtime can run
successfully in a virtual machine environment like Palacios

The details we have presented are a useful (and necessary)
first step in investigating the interaction between such a
language runtime and the (virtual) machine

Jedidiah McClurg, Kaicheng Zhang, Yixi Zhang VM Support for Parallel Runtimes



Bibliography

J. Swaine, K. Tew, P. Dinda, R.B. Findler, and M. Flatt.
Back to the futures: incremental parallelization of existing
sequential runtime systems.
In ACM Sigplan Notices, volume 45, pages 583–597. ACM,
2010.

K. Tew, J. Swaine, M. Flatt, R.B. Findler, and P. Dinda.
Places: adding message-passing parallelism to racket.
In Proceedings of the 7th symposium on Dynamic languages,
pages 85–96. ACM, 2011.

Jedidiah McClurg, Kaicheng Zhang, Yixi Zhang VM Support for Parallel Runtimes


