Symbolic Execution of Dalvik Bytecode

EECS 450 Class Project
Midterm Presentation

Jedidiah McClurg Jonathan Friedman William Ng
Mentor: Vaibhav Rastogi

Northwestern University

April 30, 2012

Jedidiah McClurg, Jonathan Friedman, William Ng Symbolic Execution of Dalvik Bytecode

Background

@ Android is a popular smartphone OS designed by Google

@ Android is designed for security

App 1 App 2
VM VM
OS Process OS Process
| Linux kernel |

e Linux-based OS in which each application runs on a VM in its
own process
e Each application has unique user ID, preventing them from
interacting maliciously
e Explicit user permission is required for apps to access devices
@ Android’s virtual machine is called Dalvik
@ Dalvik bytecode is similar to Java bytecode, with one major
difference being its register-based (rather than stack-based)
architecture

Jedidiah McClurg, Jonathan Friedman, William Ng Symbolic Execution of Dalvik Bytecode

Problem Statement

@ Android can still be vulnerable to several types of malware [3]
@ Some attacks take advantage of user’s haste or carelessness

@ A specific attack of this form which we seek to address is the
following:

Malware strategy

Obtain blanket permission to use SMS messaging, and then incur
messaging fees or subscribe to “premium” services without the
user's knowledge

@ This type of attack can be detected using various program
analyses [1]
e Dynamic analysis — this is fast, but focuses on a limited
number of program execution paths
e Static analysis — this can cover all execution paths, but can be
very slow as program complexity increases

Jedidiah McClurg, Jonathan Friedman, William Ng Symbolic Execution of Dalvik Bytecode

Symbolic Execution

@ A hybrid solution: symbolic execution
@ Instead of running an application on the VM with concrete
input/output, we can execute it using symbolic 10:

Concrete Execution

Symbolic Execution

x = readint(); x = readint();

// wait for int, e.g. "5" // x is now symbol A
b =10 + x; b =10 + x;

b *= 2; b *= 2;

return b; return b;

// result: 30 // result: 2*x(10+A)

v

@ This approach “executes’ the program in a limited number of
symbolic paths, so approximates the speed of dynamic
analysis while covering more actual paths

@ It focuses on collecting constraints rather than values, so it's
faster than static analysis

Jedidiah McClurg, Jonathan Friedman, William Ng Symbolic Execution of Dalvik Bytecode

Detecting Threats via Symbolic Execution

@ Assuming we are trying to detect calls to unexpected SMS
messaging, consider the following code:

y = 5;

x = getchar();

if (2%x == -1) {
sendSMS (evilPhoneNumber, "subscribe");
return 1;

}

return O;

@ Let's say in our concrete execution, we got the character 'z’
from the keyboard... so, x = 122 meaning the body of the if
statement will be skipped (overlooked threat!)

@ Symbolic execution would find that the body is evaluated iff
2x =5—1, i.e. x =2 (potential threat found!)

Jedidiah McClurg, Jonathan Friedman, William Ng Symbolic Execution of Dalvik Bytecode

Assembly Code Parser

@ Our symbolic execution system works at the Dalvik assembly
code level

@ Android applications are distributed as APK files, which can
be decompiled using apk-tool /smali

.class public Lcom/myspace/android/MySpace;
.super Landroid/app/Activity;
.source "MySpace.java"

application
(MySpace)

.method private openHomePage()V
.locals 2

class
(MySpace)

method
void openHomePage()

.prologue
new-instance v0, Landroid/content/Intent;

method
void <init>()

instruction
(new-instance)

const-class v1l, Lcom/myspace/android/pages/HomePage;

instruction
(const-class),

instruction
(const/4)

invoke-direct {v0, pO, vi},
Landroid/content/Intent;-><init>(Landroid/content/Context;
Ljava/lang/Class;)V

.local vO, myIntent:Landroid/content/Intent;
const/4 v1, 0x0

v

e The instructions (and structural directives provided by
apk-tool/smali) are parsed into an abstract syntax tree (AST)

Jedidiah McClurg, Jonathan Friedman, William Ng Symbolic Execution of Dalvik Bytecode

Operational Semantics

@ In order to generate the symbolic constraints as we process
the assembly code, we need to have a formal semantics for
Dalvik bytecode

@ Dalvik instructions are fairly low-level, so it is relatively
straightforward to develop a formal semantics for Dalvik
bytecode [2]

@ Using a similar approach, we are building a structural
operational (i.e. compositional) semantics

(nop, (H, R. pc)) — (H, R, pc 1)
a:int b :int c:int
(add-intabc,(H,R,pc)) — (H, R[a— [b] + [c]], pc + 1)
(51,(H,R, pc)) — (H', R, pc’)
<5152’ (H, R, pC)> — <527 (H/a R, pcl)>

Jedidiah McClurg, Jonathan Friedman, William Ng Symbolic Execution of Dalvik Bytecode

Symbolic Code Generation, Simulation, and Checking

@ The parser and semantics are almost finished, and then we
can implement the symbolic execution engine

@ This module will load the AST representation of the
application and symbolically execute it with respect to the
operational semantics

@ To make this more manageable, we will instrument the
bytecode (i.e. AST) with symbolic functionality, instead of
building an interpreter from scratch

@ The Dalvik VM (possibly via the Android emulator) will then
be used to perform the symbolic simulation by simply running
the recompiled APK file and generating a logfile with symbolic
constraints for each instruction of interest

o Finally, we will implement a checker by sending the constraints
and the properly-structured assertion to a model checker

Jedidiah McClurg, Jonathan Friedman, William Ng Symbolic Execution of Dalvik Bytecode

Overall System Architecture

The box on the right is the “core” of the symbolic simulator:

operational,
semantics

Android
emulator
(Dalvik VM)

“yes® or
countermodel

model
checker

@ The Parser loads the Dalvik code into a data structure

@ The Symbolic Code Generator instruments the parsed code
using the symbolic constraint propagation rules

@ The Constraint Solver checks the property with respect to
constraints generated by running the instrumented application

Jedidiah McClurg, Jonathan Friedman, William Ng Symbolic Execution of Dalvik Bytecode

Conclusion

@ Security issues can arise in Android due to unexpected use of
user information

@ These types of information leaks can be detected by program
analysis

@ We seek to detect a simple set of events efficiently by
symbolic simulation of Dalvik bytecode

@ This type of functionality could be integrated quite smoothly
into the Dalvik VM itself, offering a higher level of security

Jedidiah McClurg, Jonathan Friedman, William Ng Symbolic Execution of Dalvik Bytecode

Bibliography

[W. Enck, P. Gilbert, B. G Chun, L. P Cox, J. Jung,
P. McDaniel, and A. N Sheth.
TaintDroid: an information-flow tracking system for realtime
privacy monitoring on smartphones.
In Proceedings of the 9th USENIX conference on Operating
systems design and implementation, page 16, 2010.

[Henrik S. Karlsen, Erik R. Wognsen, Mads Chr. Olesen, and
Rene R. Hansen.
Study, formalisation, and analysis of dalvik bytecode.
In Proceedings of the Seventh Workshop on Bytecode
Semantics, Verification, Analysis and Transformation, 2012.

@ A. Shabtai, Y. Fledel, U. Kanonov, Y. Elovici, S. Dolev, and
C. Glezer.
Google android: A comprehensive security assessment.
Security & Privacy, IEEE, 8(2):3544, 2010.

Jedidiah McClurg, Jonathan Friedman, William Ng Symbolic Execution of Dalvik Bytecode

