
Efficient Synthesis of Network Updates
PLDI’15 Submission #142

Abstract
Software-defined networking (SDN) is revolutionizing the
networking industry, but current SDN programming plat-
forms do not provide automated mechanisms for updating
global configurations on the fly. Implementing updates by
hand is challenging for SDN programmers because networks
are distributed systems with hundreds or thousands of inter-
acting nodes. Even if initial and final configurations are cor-
rect, naively updating individual nodes can lead to incorrect
transient behaviors, including loops, black holes, access con-
trol violations, and others. This paper presents an approach
for automatically synthesizing updates that are guaranteed to
preserve specified properties. We formalize network updates
as a distributed programming problem and develop a synthe-
sis algorithm that uses counterexample-guided search and
incremental model checking to dramatically improve per-
formance. We describe our prototype implementation, and
present results from experiments on real-world topologies
and properties demonstrating that our tool scales to updates
involving thousands of nodes in a few seconds.

1. Introduction
Software-defined networking (SDN) is a new paradigm

in which a logically-centralized controller machine manages
a collection of programmable switches. The controller re-
sponds to events such as topology changes, shifts in traffic
load, or new connections from hosts, by pushing forwarding
rules to the switches, which process packets efficiently using
specialized hardware. Because the controller has global visi-
bility and full control over the entire network, SDN makes it
possible to implement a wide variety of network applications
ranging from basic routing to advanced traffic engineering,
data center virtualization, fine-grained access control, and
others [see Casado et al. 2014]. SDN has been used in pro-
duction enterprise, datacenter, and wide-area networks, and
new deployments are rapidly emerging.

Much of the power of SDN stems from the ability of con-
trollers to effect changes to the global state of the underly-
ing switches. For instance, controllers can set up end-to-end
forwarding paths, provision bandwidth to optimize utiliza-
tion, or distribute access control rules to defend against at-
tacks. However, implementing these global changes in a run-
ning network is not easy. Networks are large distributed sys-
tems, with hundreds or even thousands of switches, but the
controller can only modify the configuration of one switch
at a time. Hence, to implement a global change, an SDN
programmer must explicitly transition the network through
a sequence of intermediate configurations that reaches the
intended configuration. The code needed to implement this
transition is tedious to write and prone to error—in general,

packets may be processed by multiple intermediate configu-
rations, creating new behaviors that would not be possible in
either the initial or final configurations.

Problems related to network updates are not unique to
SDN. Traditional distributed routing protocols also suffer
from anomalies during reconvergence, including transient
forwarding loops, blackholes, and access control violations.
For users, these anomalies manifest in outages, degraded
performance, and broken connections. The research commu-
nity has developed techniques for preserving certain invari-
ants during updates [Francois and Bonaventure 2007; Raza
et al. 2011; Vanbever et al. 2011], but none of them fully
solve the problem as they are limited to specific protocols
and properties. For example, consensus routing uses dis-
tributed snapshots to ensure connectivity, but only applies
to the Border Gateway Protocol (BGP) [John et al. 2008].

On the surface, it might seem that shifting to SDN could
exacerbate update-related problems by making the network
even more programmable and dynamic. But SDN also offers
a tremendous opportunity to develop high-level update ab-
stractions that implement updates automatically while pre-
serving key invariants. Indeed, the authors of B4 [Jain et al.
2013]—the SDN controller that manages Google’s world-
wide inter-data center network—describe a vision where:
“multiple, sequenced manual operations [are] not involved
[in] virtually any management operation.”

In previous work, Reitblatt et al. [2012] proposed the no-
tion of a consistent update,which ensures that every packet
is processed either using the initial configuration or the fi-
nal configuration but not a mixture of the two. Consistency
is a powerful guarantee—it preserves all safety properties—
but it comes at a high cost. The only general consistent up-
date mechanism is a two-phase update, which tags packets
with explicit versions and maintains rules for the initial and
final configurations simultaneously. This leads to problems
on switches with limited memory and also makes updates
slower to complete due to the high degree of rule churn.

This paper proposes a different approach. Instead of forc-
ing SDN programmers to implement updates by hand, as is
typically done today, or using powerful but expensive mech-
anisms like consistent updates, we develop algorithms for
synthesizing updates automatically from formal specifica-
tions. Given initial and final configurations and an Linear
Temporal Logic (LTL) property that captures desired invari-
ants during the update, we either generate an SDN program
that implements the transition from initial to final configu-
rations while ensuring that the property is never violated, or
fail if no such program exists. Importantly, because the syn-
thesized program is only required to preserve the properties
specified in the formula, it is able to leverage strategies that

1

C1 C2

A1 A2 A3 A4

T1 T2 T3 T4

H1 H2 H3 H4

Figure 1: Example topology.

would be ruled out in other approaches. For example, if the
programmer specifies a trivial property, the system is free to
update the switches in any order. However, if she specifies
a more complex property, such as “all packets must traverse
the firewall,” then the update is more constrained. In prac-
tice, our synthesized programs use less memory on switches
and require less communication than competing approaches.

Synthesizing programs is challenging due to the high de-
gree of concurrency inherent in networks—switches may in-
terleave packet and control message processing arbitrarily,
and a given packet may be processed by single switch mul-
tiple times. Hence, we must carefully analyze all possible
event orderings and insert synchronization primitives to im-
pose structure as needed. Our algorithm works by search-
ing through the space of all possible sequences of indi-
vidual switch updates, learning from counterexamples and
employing an incremental model checker to re-use previ-
ously computed results whenever possible. This incremental
model checking algorithm turns out to be somewhat novel
in its own right—it exploits the fact that correct network
configurations are loop-free to obtain an efficient procedure
for re-checking properties after the underlying model has
been changed. Because the synthesis algorithm poses a se-
ries of closely-related model checking questions, using an
incremental model checker yields enormous performance
improvements on updates to real-world networks.

We have implemented our algorithm, and identified
heuristics to further speed up synthesis and eliminate spu-
rious synchronization. We have integrated our tool into Fre-
netic [Foster et al. 2011], synthesized updates for OpenFlow
switches, and used our system to process actual traffic gener-
ated by Linux hosts. To evaluate performance, we ran exper-
iments on a suite of real-world topologies, network config-
urations, and properties. Our results demonstrate the effec-
tiveness of synthesis, which scales to thousands of switches,
and incremental model checking, which outperforms a pop-
ular symbolic model checker in batch mode and a state-of-
the-art network model checker in incremental mode.

In summary, the main contributions of this paper are:
• We investigate the use of program synthesis to automati-

cally generate network updates (§2).
• We develop a simple operational model of SDN and

formalize the network update problem precisely (§3).
• We design a counterexample-guided search algorithm

that solves instances of the network update problem, and
prove this algorithm to be correct (§4).

0 2 4 6
0

33%

66%

100%

Time (s)
(a)

Pr
ob

es
R

ec
ei

ve
d

T1 T2 T3 T4 A1 A2 A3 A4 C1 C2
0

1X

2X

Switch
(b)

R
ul

e
O

ve
rh

ea
d

Figure 2: Experiments with naive (blue), two-phase (green), and ordering
(red) updates: (a) probes received; (b) per-switch rule overhead.

• We present a incremental LTL model checker for loop-
free models (§5).

• We build an OCaml implementation with backends to
third-party model checkers and conduct experiments on
real-world networks and properties, demonstrating strong
performance improvements (§6).

Overall, our work takes a challenging network program-
ming problem and automates it, yielding a powerful tool
for building dynamic SDN applications that ensures correct,
predictable, and efficient behavior during updates.

2. Overview
To illustrate challenges that arise when updating a net-

work, consider the network in Figure 1. It is organized into
a data center FatTree topology [Al-Fares et al. 2008] with
two core switches (C1 and C2), four aggregation switches
(A1 to A4), four top-of-rack switches (T1 to T4), and four
hosts (H1 to H4). Initially, we configure the switches to for-
ward traffic from H1 to H3 along the solid red path: T1-A1-
C1-A3-T3. Later on, we decide to shift traffic from the red
path to the dashed green path, T1-A1-C2-A3-T3 (perhaps we
need to take C1 down for maintenance). To implement this
update, the SDN programmer would have to modify the for-
warding rules installed on switch A1 and C2. Note, however,
that certain update sequences break connectivity—e.g., up-
dating A1 followed by C2 causes packets to be forwarded to
C2 before it is ready to handle them. Figure 2 (a) shows the
results of a simple experiment performed using our system
that illustrates this behavior. Using the Mininet network sim-
ulator and OpenFlow switches, we continuously sent ICMP
(ping) probes during a “naive” update (shown in blue) and
the ordering update synthesized by our tool (shown in red).
With the naive update, 100% of the probes are lost for several
seconds while the ordering update maintains connectivity.
Consistency. Previous work by Reitblatt et al. [2012] intro-
duced the notion of a consistent update and also developed
general mechanisms for ensuring consistency. An update is
said to be consistent if every packet is processed entirely us-
ing the initial configuration or entirely using the final con-
figuration, but never a mixture of the two. For example, up-
dating A1 followed by C2 is not consistent because packets
from H1 to H3 might be dropped instead of following the
red path or the green path. One might wonder whether pre-
serving consistency during updates is actually important, as
long as the network eventually reaches the intended config-

2

uration, since most networks only provide best-effort packet
delivery. While it is true that errors can be masked by pro-
tocols such as TCP with automatic-retry when packets are
lost, there is growing interest in strong guarantees about net-
work behavior. For example, consider a business using a fire-
wall to protect internal servers, and suppose they decide to
migrate their infrastructure to a public cloud like Amazon
EC2. To ensure that the cloud deployment is secure, the busi-
ness would want to know that the same isolation properties
hold in the cloud as did in their home office—in particular,
all malicious traffic is blocked by the firewall. A best-effort
strategy that only eventually reaches the target configura-
tion could step through arbitrary intermediate configurations
would not necessarily maintain this guarantee.
Two-Phase Updates. Reitblatt et al. [2012] also introduced
a general technique for ensuring consistency called a two-
phase update. The idea is to explicitly tag packets with ver-
sions upon ingress and use these version tags to determine
which forwarding rules to use at each hop. Unfortunately,
two-phase updates have a significant cost. During the transi-
tion, switches must maintain the forwarding rules for both
configurations, effectively doubling the memory require-
ments needed to execute the program. This is not practical
in many networks as switches store forwarding rules using
ternary content-addressable memories (TCAM), which are
expensive and power-hungry. Figure 2 (b) shows the results
of another simple experiment where we measured the total
number of rules installed on each switch: with two-phase
updates, several switches have twice the number of rules
compared to the synthesized ordering update. Even worse,
it takes a non-trivial amount of time to modify forwarding
rules—on the order of tens of seconds for a few hundred
rules [Jin et al. 2014]! Hence, because two-phase updates
require modifying a large number of rules, they can take a
correspondingly long time to complete. Together, these over-
heads often make two-phase updates a non-starter.
Our Approach. Our approach is based on the observation
that in many settings consistent and two-phase updates are
overkill. In certain situations, consistency can be achieved
by simply choosing a correct order of updates of individual
switches. We call this type of update an ordering update.
For example, to update from the red path to the green path,
we can update C2 followed by A1. Moreover, even when
we cannot achieve full consistency, we can get often still get
sufficiently strong guarantees for the specific application at
hand by carefully updating the switches in a particular or-
der. To illustrate, suppose that instead of shifting traffic to
the green path, we wish to use the dashed and dotted blue
path: T1-A2-C1-A4-T3. It is impossible to transition from
the red path to the blue path by ordering switch updates with-
out breaking consistency: we can update A2 and A4 first, as
they are unreachable in the initial configuration, but if we up-
date T1 followed by C1, then packets can traverse the path
T1-A2-C1-A3-T3, while if we update C1 followed by T1,

then packets can traverse the path T1-A1-C1-A4-T3. Nei-
ther of these alternatives is allowed in a consistent update.
Fortunately, this failure to find a consistent update hints at
the germ of a solution: if we only care about preserving con-
nectivity between H1 and H3, then either path is actually
acceptable. Thus either updating C1 before T1, or T1 before
C1, would work. Hence, if we relax strict consistency and
instead provide programmers with a way to specify proper-
ties that must be preserved across an update, then ordering
updates will exist in many more situations. In fact, recent
work by Mahajan and Wattenhofer [2013] has explored us-
ing ordering updates, but only for specific properties like
loop-freedom, reachability, waypointing, service-chaining,
blackhole-freedom, drop-freedom, etc. Rather than handling
a fixed set of “canned” properties, we use a specification
language that is expressive enough to encode these proper-
ties and others, as well as combinations of properties—e.g.,
a programmer could state that loop-freedom and service-
chaining must both hold during an update.
In-flight Packets and Waits. To handle certain updates, an
additional synchronization primitive is needed to generate
correct ordering updates (or correct two-phase updates, for
that matter). To illustrate, suppose we want to transition from
the red path to the blue path, as above, but in addition to pre-
serving connectivity, we want every packet to traverse either
A2 or A3. Why might we want this? Perhaps those switches
are actually middleboxes that scrub malicious packets be-
fore forwarding them to their destination. Now consider the
update that modifies the configurations on A2, A4, T1, and
C1, in that order. Between the time that we update T1 and
C1, there might be a (small) number of packets that are for-
warded by T1 before it is updated, and are forwarded by C1
after it is updated. These packets would not traverse A2 or
A3, and so indicate a violation of the specification. To fix
this problem, we can simply pause after updating T1 until
any packets it previously forwarded have left the network.
We thus need a controller command “wait” that pauses for a
sufficient period of time to ensure that in-flight packets have
exited the network. Hence, the correct update sequence for
this example would be as above, with a “wait” between T1
and C1. Note that two-phase updates also need to wait in all
cases, once per update. Before deleting the old version of
the rules on switches, we need to be sure that all in-flight
packets have left the network. Further, the time needed to
update a single switch can be upwards of 10 seconds [Jin
et al. 2014; Lazaris et al. 2014], whereas typical transit time
for data centers (the time it takes the packet to traverse a
data center) is orders-of-magnitude lower, and is measure in
microseconds [Alizadeh et al. 2010]. Hence, waiting for in-
flight packets has a negligible overall effect.
Summary. This paper presents a sound and complete algo-
rithm and accompanying implementation that synthesizes a
large class of ordering updates automatically. The updates
we generate initially modify each switch at most once and

3

“wait” between updates to switches, but a heuristic removes
an overwhelming majority of unnecessary waits in practice.
For example, in switching from the red path to the blue path
(while preserving connectivity from H1 to H3, and making
sure that each packet visits either A3 or A4), our tool pro-
duces the following sequence: update A2, then A4, then T1,
then wait, then update C1. The resulting update can be exe-
cuted using the Frenetic SDN platform and used with Open-
Flow switches—e.g., we generated Figure 2 using our tool.

3. Preliminaries and Network Model
To facilitate precise reasoning about networks during up-

dates, we develop a formal model in the style of Chemical
Abstract Machine [Berry and Boudol 1990]. This model cap-
tures the key features of networks using a simple operational
semantics. It is similar to the one used by Guha et al. [2013]
but is streamlined to model features most relevant to updates.
3.1 Network Model
Basic structures. Each switch sw , port pt , or host h is iden-
tified by a natural number. A packet pkt is a record of fields
containing header values such as source and destination ad-
dress, protocol type (TCP, UDP, etc.), and so on. We write
{f1; . . . ; fk} for the type of packets having fields fi and use
“dot” notation to project fields from records. The notation
{r with f = v} denotes functional update of r.f .
Forwarding Tables. A switch configuration is defined in
terms of forwarding rules, where each rule has a pattern pat
specified as a record of optional packet header fields and a
port, a list of actions act that either forward a packet out a
given port (fwd pt) or modify a header field (f :=n), and a
priority that disambiguates rules with overlapping patterns.
We write {pt?; f1?; . . . ; fk?} for the type of patterns, where
the question mark denotes an option type. A set of such
rules ruls forms a forwarding table tbl . The semantic func-
tion [[tbl]] maps packet-port pairs to multisets of such pairs,
finding the highest-priority rule whose pattern matches the
packet and applying the corresponding actions. If there are
multiple matching rules with the same priority, the function
is free to pick any of them, and if there are no matching rules,
it drops the packet. The forwarding tables collectively define
the data plane of the network.
Commands. The control plane modifies the data plane by
issuing commands that update forwarding tables. The com-
mand (sw , tbl) replaces the forwarding table on switch sw
with tbl (we call this a switch-granularity update). We model
this command as an atomic operation, since it can be imple-
mented with OpenFlow bundles [Open Networking Foun-
dation 2013]. Sometimes switch granularity is too coarse to
find an update sequence, in which case one can consider up-
dating individual rules (rule-granularity). Our tool supports
this finer-grained mode of operation, but since it is not con-
ceptually different from switch granularity (a switch can be
modeled as a network of smaller switches, one per rule), we
frame most of our discussion in terms of switch-granularity.

To synchronize updates involving multiple switches, we
include a wait command. In the model, the controller main-
tains a natural-number counter known as the current epoch
ep. Each packet is annotated with the epoch on ingress. The
control command incr increments the epoch so that subse-
quent incoming packets are annotated with the next epoch,
and flush blocks until all packets annotated with the pre-
vious epoch have exited the network. We introduce a com-
mand wait defined as incr ; flush . The epochs are included
in our model solely to enable reasoning. They do not need
to be implemented in a real network—all that is needed is
a mechanism for blocking the controller to flush all packets
currently in the network. For example, given a topology one
could compute a conservative delay based on the maximum
hop count, and then implement wait by sleeping, rather than
synchronizing with each switch.
Elements. The elements E of the network model include
switches Si, links Lj , and a single controller element C.
A network N is a tuple containing switches, links, and a
controller: 〈C, S1, · · · , Sk, L1, · · · , Lm〉. Each switch Si is
encoded as a record comprising a unique identifier sw , a
table tbl of prioritized forwarding rules, and a multiset prs of
pairs (pkt , pt) of buffered packets and the ports they should
be forwarded to respectively. Each link Lj is represented by
a record consisting of two locations loc and loc′ and a list of
queued packets pkts , where a location is either a host or a
switch-port pair. Finally, the controller C is represented by a
record containing list of commands cmds and an epoch ep.
In this work, we assume that commands are totally-ordered.
This can be ensured using OpenFlow barrier messages.
Operational semantics. The behavior of a network is de-
fined by the small-step operational rules given in Figure 3.
The rules define interactions between subsets of the ele-
ments, based on the semantics of OpenFlow switches [McK-
eown et al. 2008]. The states of the model are given by mul-
tisets Es of elements. We write {x} to denote a singleton
multiset, m1] m1 for the union of multisets m1 and m2.
Similarly, we write [x] for a singleton list, and l1@l2 for
the concatenation of l1 and l2. We consider each transition
N

o−→ N ′ to be annotated, with o being either an empty anno-
tation, or an observation (sw , pt , pkt) indicating the location
and packet being processed at that step.

The first rules describe network behavior in the data
plane. The IN rule admits arbitrary packets into the net-
work from a host, stamping them with the current controller
epoch. The dual OUT rule removes a packet buffered on a
link adjacent to a host. The PROCESS rule processes a sin-
gle packet on a switch, finding the highest priority rule with
matching pattern, applying the actions of that rule to gener-
ate a multiset of packets, and adding those packets to the out-
put buffer. The FORWARD rule moves a packet from a switch
to the adjacent link. The final few rules describe control-
plane behavior of the network. UPDATE replaces the table
on a single switch. INCR increments the epoch on the con-

4

Switch sw ∈ N
Port pt ∈ N
Host h ∈ N
Priority pri ∈ N
Epoch ep ∈ N
Field f ::= src | dst | typ | ..

Packet pkt ::= {f1; ..; fk}
Pair pr ::= (pkt , pt)
Pattern pat ::= {pt?; f1?; ..; fk?}
Action act ::= fwd pt | f :=n
Rule rul ::= {pri ; pat ; acts}
Table tbl ::= ruls

Location loc ::= h | (sw , pt)
Command cmd ::= (sw , tbl) | incr | flush
Switch S ::= {sw ; tbl ; prs}
Link L ::= {loc; pkts; loc′}
Controller C ::= {cmds; ep}
Element E ::= S | L | C

Data Plane
L.loc = h L.loc′ = (sw ′, pt ′) L.pkts = pkts C.ep = ep

C, L −→ C, {L with pkts = pktep ::pkts}
IN

L.loc = (sw , pt) L.loc′ = h L.pkts = (pktep ::pkts)

L
(sw,pt,pkt)−−−−−−−→ {L with pkts = pkts}

OUT

L.loc′ = (sw , pt) L.pkts = (pktep ::pkts) S.sw = sw [[S.tbl]](pkt , pt) = {(pkt1, pt1), .., (pktn, ptn)}

L, S
(sw,pt,pkt)−−−−−−−→ {L with pkts = pkts}, {S with prs = S.prs] {(pktep1 , pt1), .., (pktepn , ptn)}}

PROCESS

S.sw = sw S.prs = {(pktep , pt)}] prs L.loc = (sw , pt)

S, L −→ {S with prs = prs}, {L with pkts = L.pkts@[pktep]}
FORWARD

Control Plane and Abstract Machine

C.cmds = ((sw , tbl)::cmds) S.sw = sw

C, S −→ {C with cmds = cmds}, {S with tbl = tbl}
UPDATE

C.cmds = (incr ::cmds)

C −→ {C with cmds = cmds; ep = C.ep + 1}
INCR

C.cmds = (flush::cmds) ep(S1, .., Sk, L1, .., Lm) = C.ep

S1, .., Sk, L1, .., Lm, C −→ S1, .., Sk, L1, .., Lm, {C with cmds = cmds}
FLUSH

Es1
o−→ Es′1

Es1] Es2
o−→ Es′1] Es2

CONGRUENCE

Figure 3: Network model.

troller, and FLUSH blocks the controller until all packets in
the network are annotated with at least the current epoch.
We write ep(Es) to denote the smallest annotation on any
packet in Es . The final rule, CONGRUENCE, allows any sub-
collection of elements in the network to interact.
3.2 Network Update Problem

In order to define the network update problem, we need
to first define traces of packets flowing through the network.
Packet traces. Given a network N , we can use our opera-
tional rules to generate a sequence of observations. However,
the network can process multiple packets concurrently, and
we want the observations generated by a single packet. We
define a successor relation v for observations (Definition 8,

Appendix A). Intuitively o
ep

v o′ if the network can directly
produce the packet in o′ by processing o in the epoch ep.

Definition 1 (Single-Packet Trace). Let N be a network.
The sequence (o1 · · · ol) is a single-packet trace of N if

N
o′1−→ . . .

o′k−→ Nk such that (o1 · · · ol) is a subsequence of
(o′1 · · · o′k) for which every observation is a successor of the
preceding observation in monotonically increasing epochs,
and if o1 = o′j = (sw , pt , pkt), then ∃o′i ∈ {o′1, · · · , o′j−1}
such that o′i is IN moving pkt from host to (sw , pt) and none
of o′i, · · · , o′j−1 is a predecessor of o1, and the ol transition
is an OUT terminating at a host.

Intuitively, single-packet traces are end-to-end paths through
the network. We write T (N) for the set of single-packet
traces generated by N . A trace (o1 · · · ok) is loop-free if
oi 6= oj for all distinct i and j between 1 and k. In this paper
we consider only loop-free traces. A network that forwards
packets around a loop is generally considered to have an

error. In the worst case, it can cause a packet storm, wasting
bandwidth and degrading performance. Our tool detects and
rejects configurations with loops automatically.
LTL formulas. Many important network properties can be
understood by reasoning about the traces that packets can
take through the network. For example, reachability requires
that all packets starting at src eventually reach dst. Tem-
poral logics are an expressive and well-studied language for
expressing trace-based properties, providing constructs for
specifying the location and properties of a packet and its
path through the network. In this paper, we will use Lin-
ear Temporal Logic (LTL) to describe traces in our network
model. Let APH be atomic propositions that test the value
of a switch, port, or packet field: fi = n. Elements of the
set 2APH are called traffic classes. Intuitively, each traffic
class T identifies a set of packets that agree on the values of
particular header fields. An LTL formula ϕ in negation nor-
mal form (NNF) is either true, false, atomic proposition p
in APH , negated proposition ¬p, disjunction ϕ1 ∨ ϕ2, con-
junction ϕ2 ∧ϕ2, next Xϕ, until ϕ1Uϕ2, or release ϕ1Rϕ2,
where ϕ1 and ϕ2 are LTL formulas in NNF. The operators F
and G can be defined using other connectives. Since (finite)
single-packet traces can be viewed as infinite sequences of
packet observations where the final observation repeats in-
definitely, the semantics of the LTL formulas can be defined
in a standard way over traces. We write t |= ϕ to indicate that
the single-packet trace t satisfies the formula ϕ and T |= ϕ
to indicate that t |= ϕ for each t in T . Given a network N
and an formula ϕ, we write N |= ϕ if T (N) |= ϕ.
Problem Statement. We now formalize the network update
problem. Recall that our network model includes commands
for updating a single switch, incrementing the epoch, and

5

waiting until all packets in the preceding epoch have been
flushed from the network. At a high-level, our goal is to iden-
tify a sequence of commands to transition the network be-
tween configurations without violating specified invariants.
We begin by developing notation for updating switches.

For network N , we write N [sw ← tbl] for the switch
update obtained by updating the forwarding table for switch
sw to tbl . We call the network N static if C.cmds is empty.
If static networks N1, Nn have the same traces T (N1) =
T (Nn), then we say they are trace-equivalent, N1 ' Nn.

Definition 2 (Network Update). Let N1 be a static network.
Sequence cmds induces a sequence N1, . . . , Nn of static
networks if c1 · · · cn−1 are the update commands in cmds ,
and for each ci = (sw , tbl), we haveNi[sw ← tbl] ' Ni+1.

We write N1
cmds−→ Nn if there exists a sequence of static

networks induced by cmds which ends with Nn.
We call a network N stable if all packets in N are an-

notated with the same epoch. Intuitively, a stable network
is one with no in-progress update, i.e. any preceding update
command was finalized with a wait. Consider the set of un-
constrained single-packet traces generated by removing the
requirement that traces start at an ingress (see Definition 9,
Appendix A). This includes T (N) as well as traces of pack-
ets initially present in N . We call this T̄ (N), and note that
for a stable network N , T̄ (N) is equal to T (N).

Definition 3 (Update Correctness). Let N be a stable static
network and let ϕ be an LTL formula. The command se-
quence cmds is correct with respect to N and ϕ if N̂ |= φ
where N̂ is obtained from N by setting C.cmds = cmds .

A network configuration is a static network which con-
tains no packets. We can now present the problem statement.

Definition 4 (Update Synthesis Problem). Given a stable
static network N , a network configuration N ′, and an LTL
specification ϕ, construct a sequence of commands cmds

such that (i) N cmds−→ N ′′ where N ′′ ' N ′, and (ii) cmds
is correct with respect to ϕ.

3.3 Efficiently Checking Network Properties
To facilitate efficient checking of network properties us-

ing LTL model checkers, we now show how to model a net-
work as a Kripke structure.
Kripke structures. A Kripke structure is a tuple
(Q,Q0, δ, λ), where Q is a finite set of states, Q0 ⊆ Q is
a set of initial states, δ ⊆ Q × Q is a transition relation,
and λ : Q → 2AP labels each state with a set of atomic
propositions drawn from a fixed set AP . A Kripke structure
is complete if every state has at least one successor. A state
q ∈ Q is a sink state if for all states q′, δ(q, q′) implies
that q = q′, and we call a Kripke structure DAG-like if the
only cycles are self-loops on sink states. In this paper, we
will consider complete and DAG-like Kripke structures. A
trace t is an infinite sequence of states, t0t1 . . . such that

∀i ≥ 0 : δ(ti, ti+1). Given a trace t, we write ti for the suffix
of t starting at the i-th position—i.e., ti = titi+1 Given
a set of traces T , we let T i denote the set {ti | t ∈ T }.

Given a state q of a Kripke structureK, let tracesK(q) be
the set of traces ofK starting from q and succK(q) be the set
of states defined by q′ ∈ succK(q) if and only if δ(q, q′). We
will omit the subscriptK when it is clear form the context. A
Kripke structureK = (Q,Q0, δ, λ) satisfies an LTL formula
ϕ if for all states q0 ∈ Q0 we have that traces(q0) |= ϕ.
Network Kripke structures. For every static network N , we
can generate a Kripke structure K(N) containing corre-
sponding traces (Definition 10, Appendix A). For simplicity,
although networks support packet modification, we currently
do not consider reasoning about them. This means that the
Kripke structure has disjoint parts corresponding to the traf-
fic classes. It is straightforward to enable packet modifica-
tion, by adding the appropriate transitions between the parts
of the Kripke structure, but we leave this for future work.
The following lemma shows that the generated Kripke struc-
ture faithfully encodes the semantics of the network.

Lemma 1 (Network Kripke Structure Soundness). LetN be
a static network andK = K(N) a network Kripke structure.
For every single-packet trace t in T (N) there exists a trace
t′ of K from a start state such that t . t′, and vice versa.

This means that checking LTL over single-packet traces can
be performed via LTL model-checking of Kripke structures.
Checking network configurations. One key challenge in
finding correct update sequences is that the network is a dis-
tributed system. Hence, certain packets might “see” an in-
consistent configuration (some switches updated, some not).
Reasoning about all possible interleavings of commands
quickly becomes intractable, but we can simplify the prob-
lem if we ensure that each packet traverses at most one
switch that was updated after the packet entered the network.

Definition 5 (Careful Command Sequences). A sequence of
commands (cmd1 · · · cmdn) is careful if every pair of switch
updates is separated by a wait command.

In the remainder of this paper, we consider careful command
sequences, and will develop a sound and complete algorithm
that finds them efficiently. In Section 4, we describe a tech-
nique for removing wait commands which works very well
in practice, but we leave a complete optimal wait removal
for future work. Recall that T (N) denotes the sequence of
all possible traces that a packet could take through the net-
work, regardless of when the commands in N.cmds are ex-
ecuted. This is a superset of the traces induced by each static
Ni in a solution to the network update problem. However, if
cmds is careful, then each packet only encounters a single
configuration, allowing the correctness of careful command
sequences to be reduced to the correctness of each Ni.

Lemma 2 (Careful Correctness). Let N be a stable network
withC.cmds careful and let ϕ be an LTL formula. If cmds is

6

Procedure ORDERUPDATE(Ni,Nf , ϕ)
Input: Initial static network Ni, final static configuration Nf , formula ϕ.
Output: update sequenceL, or error message if no update sequence exists
1: W ← false;V ← false . Formula encoding wrong configurations.
2: (ok, L)← DFSforOrder(Ni,K(Ni), ⊥,ϕ,λ0)
3: if ok then return L
4: else return “No update exists.”

Procedure DFSFORORDER(N ,K,s,ϕ,λ)
Input: Static network N and Kripke structure K, next switch to update s,

formula ϕ, and labeling λ.
Output: Boolean ok if a correct update exists; correct update sequence L
6: if N |= V ∨W then return (false,[])
7: if s = ⊥ then (ok,cex,λ)← modelCheck(K,ϕ)
8: else
9: (N ,K,S)← swUpdate(N ,s)

10: (ok,cex,λ)← incrModelCheck(K,ϕ,S,λ)
11: V← V ∨ N
12: if ¬ ok then
13: W←W ∨ analyzeCex(cex)
14: return (false,[])
15: if N = Nf then return (true,[s])

16: for s′ ∈ possibleUpdates(N) do
17: (ok,L)← DFSforOrder(N ,K,s′,ϕ,λ)
18: if ok then return (true,(upd s′) :: L)
19: return (false,[])

Figure 4: ORDERUPDATE Algorithm.

careful and Ni |= φ for each static network in any sequence
induced by cmds , then cmds is correct with respect to ϕ.

In Lemma 5, 6 (Appendix A), we show that checking the
unique sequence of network configurations induced by cmds
is equivalent to the above. We now develop a sound and
complete algorithm for solving the update synthesis problem
for careful sequences by checking network configurations.

4. Update Synthesis Algorithm
This section presents an algorithm for synthesizing net-

work updates. It uses depth-first search (DFS) to explore the
space of possible solutions, using counterexamples to detect
wrong configurations, and exploiting several optimizations.
Algorithm. Figure 4 presents the ORDERUPDATE algo-
rithm. It either returns a sequence of updates or fails if no
such sequence exists. Most of the work is done by DFS-
FORORDER, which manages the search and invokes the
model checker. We use DFS because we expect common
properties/configurations to admit many update sequences.

Each call to DFSFORORDER attempts to add one switch
to the current update sequence, yielding a new network con-
figuration (the switch is given in parameter s to the proce-
dure). We maintain two formulas, V and W , tracking the set
of configurations that have been visited so far, and the set of
configurations excluded by counterexamples, respectively.

To check whether all packet traces in this configura-
tion satisfy the LTL property ϕ, we invoke our incremen-
tal model checking algorithm. More precisely, the first time
DFSFORORDER is called, we call a full check of the model
(line 7). The model checker labels the nodes of the Kripke
structure with information about what formulas hold for

paths starting at that state. The labeling (stored in λ) is then
re-used in the subsequent model checking calls of related
Kripke structures (line 10). The parameters passed in the in-
cremental model checking call are: the updated Kripke struc-
ture K, the specification ϕ, the set of nodes S in K whose
transition function has changed by the update of the switch s,
and the correct labeling λ of the Kripke structure before the
update. The algorithm for incremental model checking, and
the functions modelCheck and incrModelCheck are defined
in Section 5. Note that before the initial model checking,
we convert the network configuration N to a Kripke struc-
ture. Furthermore, the update of the Kripke structure is per-
formed by a function swUpdate(N , s) that returns a triple
(N ′, S,K ′), where N is a static network, s is a switch, N ′

is the new static network, K ′ is the updated Kripke struc-
ture obtained as K(N ′), and S is the set of nodes that has
different outgoing transitions in K ′ than in K.

If the model checker returns true, then the N is safe
and the search proceeds recursively. In this case, we add
(upd s′) to the current sequence of commands. The state-
ment (upd s′) is two commands for the Kripke structure:
(s, tbl) where tbl is the forwarding table in the new config-
uration, and a wait command. If the model checker returns
false, the resulting counterexample is analyzed and added to
W (see below), and the search backtracks.

We now show optimizations improving the synthesis
(pruning with counterexamples, early termination), and im-
proving efficiency of synthesized updates (wait removal).
Counterexamples. The counterexample-based pruning
learns from counterexamples which network configurations
do not satisfy the specification, thus avoiding model check-
ing calls. The function analyzeCex (cex) (Line 13) analyzes
the counterexample cex , and returns a formula representing
the set of switches that occurred in the counterexample
trace, with flags indicating whether each switch was updated
or not. This allows equivalent future configurations to
be immediately eliminated without invoking the model
checker. To illustrate, recall the red-green example in
Section 2 and suppose that we update A1 and then C2. At
the intermediate configuration obtained by updating just
A1, packets will be dropped at C2, meaning the intended
specification (H1-H3 connectivity) will not be satisfied.
The unsafe configuration consisting of A1 updated and
C2 not updated will be added to W . In practice, many
counterexamples are small compared to the total size of the
network, and this greatly prunes the search space.
Early search termination. The early search termination op-
timization can help speed up the termination of the search
when no update sequence is possible. Recall how the al-
gorithm uses the counterexamples to prune configurations.
With similar reasoning, we can use counterexamples for
pruning possible sequences of updates. Consider a coun-
terexample trace which involves three nodes A,B,C, with
A updated, B updated, and C not updated. This can be seen

7

as requiring that C must be updated before A, or C must
be updated before B. Early search termination involves col-
lecting such constraints on possible updates, and terminat-
ing if these constraints taken together are a contradiction. In
our implementation, this is done efficiently using an (incre-
mental) SAT solver. If the solver determines that no update
sequence is possible, the search can terminate.
Wait removal. The wait removal heuristic removes waits that
are not necessary for correctness, based on the following ob-
servation. Consider two switches A,B, and consider the se-
quence of updates: A followed by B. If in the initial con-
figuration, packets processed by A cannot reach B, then we
do not need to wait after updating A and before updating B.
Given a sequence of commands, we can remove unnecessary
waits if we can maintain reachability-between-switches in-
formation. In our tool, this operates as a post-processing pass
once an update sequence is found. In practice, this heuristic
removes a majority of unnecessary waits (see Section 6).
Formal Properties. We prove that our algorithm is sound for
the class of careful updates, and complete if we limit our
search to simple update sequences:

Definition 6 (Simple Command Sequences). A sequence of
commands (cmd1 · · · cmdn) is simple if each switch ap-
pears at most once in the sequence.

Note that we could broaden our simple definition in many
ways (e.g. k-simple, where each switch appears at most k
times) while still remaining complete, but we have found the
above restriction to work well in practice.

We prove soundness by showing that if the algorithm
returns an update sequence, then this sequence is correct
with respect to ϕ and Ni, and completeness by observing
that it searches through all simple, careful sequences.

Theorem 1 (Soundness). Given initial network Ni, final
configuration Nf , and LTL formula ϕ, if ORDERUPDATE

returns a command sequence cmds , then Ni
cmds−→ N ′ s.t.

N ′ ' Nf , and cmds is correct with respect to ϕ and Ni.

Theorem 2 (Completeness). Given initial network Ni, final
configuration Nf , and specification ϕ, if there exists a sim-
ple, careful sequence cmds with Ni

cmds−→ N ′ s.t. N ′ ' Nf ,
then ORDERUPDATE returns one such sequence.

5. Incremental Model Checking
We now present an incremental algorithm for model

checking Kripke structures. This algorithm is central to our
synthesis tool, which invokes the model checker on many
closely related structures as it computes updates. The al-
gorithm makes use of the fact that the only cycles in the
Kripke structure are self-loops on sink nodes—something
that is true of structures encoding loop-free network con-
figurations. It works by re-labeling the states of a previously
labeled Kripke structure with the (possibly different) set of
formulas that hold after an update.

State Labeling. We begin by presenting a simple algorithm
for labeling states of a Kripke structure with sets of formu-
las, following the approach introduced by Wolper, Vardi,
and Sistla [1983] (WVS), and following the presentation
by Vardi and Wolper [1986]. The WVS algorithm translates
an LTL formula ϕ into a local automaton and an eventual-
ity automaton. The local automaton checks the consistency
between a state and its parent, and handles labeling of all for-
mulas except ϕ1 U ϕ2, which is checked by the eventuality
automaton. The two automata are then composed into a sin-
gle Büchi automaton A whose states correspond to subsets
of the set of subformulas of ϕ and their negations.

Hence, we label each state of the Kripke structure by a
set L of sets of formulas s.t. if a state q is labeled by L,
then for each set of formulas S in L, there exists a trace t
starting from q satisfying all the formulas in S. When we
define ecl(ϕ), we will see that these are exactly the formulas
in ecl(ϕ) that t satisfies.

We now describe state labeling precisely, deferring defini-
tions of several auxiliary functions to Appendix C (Figure 7).
Let ϕ be an LTL formula in NNF. The extended closure of
ϕ, written ecl(ϕ), is the set of all subformulas of ϕ and their
negations. A subset M ⊂ ecl(ϕ) of the extended closure
is said to be maximally consistent if it contains true and is
simultaneously closed and consistent under boolean opera-
tions (e.g. ϕ1 ∨ϕ2 ∈M if and only if ϕ1 ∈M or ϕ2 ∈M).
Likewise, the function follows(M1,M2) captures the notion
of successor induced by LTL’s temporal operators, lifted to
maximally-consistent sets (e.g., X ϕ1 ∈ M1 iff ϕ1 ∈ M2).
Given a trace t and a maximally-consistent set M , we write
t |= M if and only if for all ψ ∈M , we have t |= ψ.

For the rest of this section, we fix a Kripke structure
K = (Q,Q0, δ, λ), a state q in Q, an LTL formula ϕ in
NNF, and a maximally-consistent set M ⊂ ecl(ϕ).

To compute the label of a state q, there are two cases
depending on whether it is a sink state or a non-sink state.
If q is a sink state, the function HoldsSink(q,M) com-
putes a predicate that is true if and only if, for all ψ ∈ M
and the unique trace t starting from q, we have t |= ψ.
More formally, HoldsSink(q,M) is defined to be (∀ψ ∈
M : Holds0 (q, ψ)). The function Holds0 computes a pred-
icate that is true if and only if ψ holds at q. For example,
Holds0 (q, φ1 U φ2) is defined as Holds0 (q, φ2) because the
only transition from q is a self-loop.

For the second case, suppose q is a non-sink state. If we
are given a labeling for succK(q), we can extend it to a
labeling for q. Let V ⊆ Q be a set of vertices. A function
labGrK is a correct labeling of K with respect to ϕ and V
if for every v ∈ V , it returns a set L of maximally consistent
sets such that M ∈ L if and only if M ⊆ ecl(ϕ) and there
exists a trace t in traces(v) such that t |= M . Suppose that
labGrK is a correct labeling of K with respect to ϕ and
succK(q). The function HoldsK(q,M, labGrK) computes
a predicate that is true if and only if there exists a trace t in

8

Figure 5: Incremental labeling—Initial (left), Final (right)

tracesK(q) with t |= M . Formally, HoldsK(q,M, labGrK)
is defined as (λ(q) = (AP ∩M)) ∧ ∃q′ ∈ succK(q),M ′ ∈
labGrK(q′) : follows(M,M ′).

The following captures the correctness of labeling:

Lemma 3. First, HoldsSink(q,M) ⇔ ∃t ∈ traces(q) :
t |= M for sink states q. Second, if labGrK

is a correct labeling w.r.t. ϕ and succK(q), then
HoldsK(q,M, labGrK)⇐⇒ ∃t ∈ tracesK(q) : t |= M .

Finally, we define labelNodeK(ϕ, q, labGrK), which
computes a label L for q such that M ∈ L if and only if
there exists a trace t ∈ tracesK(q) such that t |= M for
all M ⊂ ecl(ϕ). We assume that labGrK is a correct la-
beling of K with respect to ϕ and succ(q). For sink states,
labelNodeK(ϕ, q, labGrK) returns {M | M ∈ ecl(ϕ) ∧
HoldsSink(q,M)}, while for non-sink states it returns {M |
M ∈ ecl(ϕ) ∧HoldsK(q,M, labGrK)}.
Incremental algorithm. To incrementally model check a
modified Kripke structure, we must re-label its states with
the formulas that hold post-update.

Let us assume that we have two Kripke structures K =
(Q,Q0, δ, λ) and K ′ = (Q′, Q′0, δ

′, λ′), such that Q = Q′.
Furthermore, assume that Q = Q′, and there is a set U ⊆ Q
such that δ and δ′ differ only on nodes in U . We call such a
triple (K,K ′, U) an update of K.

An update (K,K ′, U) might add or remove edges con-
nected to a (small) set of nodes, corresponding to a change
in the rules on a switch. Suppose that labGrK is a correct la-
beling ofK with respect to ϕ andQ. The incremental model
checking problem is defined as follows: we are given an up-
date (K,K ′, U), and labGrK , and we want to know whether
K ′ satisfies ϕ. The naive approach is to model check K ′

without using the labeling labGrK . We call this the mono-
lithic approach. In contrast, the incremental approach uses
labGrK (and thus intuitively re-uses the results of model
checking K to efficiently verify K ′).
Example. Consider the structure on the left side of Figure 5,
with H the only initial state. Suppose that the update modi-
fies J , and the δ′ relation only contains the pair (J,N). The
resulting structure is shown on the right side of Figure 5.
Consider labeling the structure with formulas F a, F b, and
F a∨F b. On the left hand side, we will have that the nodes
K and M are labeled by F a, the nodes L and N by F b, the
nodes I and H by F a ∨ F b, and the node J by F a. Also
assume that we want to label the Kripke structure after the
update on the right-hand side. Given that the update changes
only node J , the labeling can only change for J and its an-
cestors. We therefore start labeling node J , and find that its

label becomes F b. Labeling proceeds to H , and finds that
its label has not changed, it is still F a ∨ F b. The labeling
process could then stop, even if node H had ancestors.
Re-labeling states. Let ancestorsK(V) be the ancestors of
V in K—i.e., a set of vertices s.t. ancestorsK(V) ⊆ Q and
q ∈ ancestorsK(V), if some node v ∈ V is reachable
from q. To define incremental model checking for ϕ, we
need a function accepting a property ϕ, set of vertices V ,
labeling labGrK that is correct for K with respect to ϕ and
Q \ ancestors(V), and returns a correct labeling of K with
respect to ϕ and Q. This function relblK is:

relblK(ϕ, labGr , V) =

{
labGr if V = ∅
relblK(ϕ, labGr ′, V ′) otherwise

where labGr ′(v) is labelNodeK(ϕ, v, labGr) if v ∈ V , and
it is labGr(v) if v 6∈ V . The set V ′ is {q | ∃v ∈ V : v ∈
succK(q)}.
Theorem 3. Let V ⊆ Q be a set of vertices and labGrK a
correct labeling with respect to ϕ and Q \ ancestorsK(V).
Then relblK(ϕ, labGrK , V) is a correct labeling with re-
spect to ϕ and Q.

Given a labeling that is correct with respect to ϕ
and Q, it is easy to check whether ϕ is true for
all the traces starting in the initial states: the predi-
cate checkInitStatesK(labGrK , ϕ) is defined as ∀q0 ∈
Q0,M ∈ labGr(q) : ϕ ∈ M . Next, let Qf be the set
of all sink states of K. Then ancestorsK(Qf) is the set
Q of all states K. Therefore, for any initial labeling lG0,
relbl(ϕ, lG0, Qf) is a correct labeling with respect to ϕ and
Q. The function modelCheckK(ϕ) is defined to be equal to
checkInitStatesK(relblK(ϕ, lG0, Qf)), where we can de-
fine lG0 to be the empty labeling λv.∅. We now define our
incremental model checking function. Let (K,K ′, U) be an
update, and labGrK a previously-computed correct labeling
of K with respect to ϕ and Q, where Q is the set of states
of K. The function incrModelCheck(K ′, ϕ, U, labGrK) is
defined as checkInitStatesK′(relblK′(ϕ, labGrK , U)).

Corollary 1. First, modelCheckK(ϕ) = true ⇐⇒ K |=
ϕ. Second, incrModelCheck(K,ϕ,U, labGr) = true ⇐⇒
K |= ϕ.

The runtime complexity of the modelCheck function is
O(|K|×2|ϕ|). The runtime complexity of incrModelCheck
is O(|ancestorsK(U)| × 2|ϕ|), where U is the set of nodes
being updated. Note that to achieve this complexity, the
function labelNode must be implemented efficiently.
Counterexamples. This incremental algorithm can be ex-
tended to generate counterexamples in cases where the for-
mula does not hold. A formula ¬ϕ does not hold, if an initial
state is labeled by L, such that there exists a set M ∈ L,
such that ¬ϕ ∈ M . Examining the definition of labelNode,
we find that in order to add a set M to the label L of a node
q, there is a set M ′ in the label of one a child q′ of q that ex-

9

plains why M is in L. The first node of the counterexample
trace starting from q is one such child q′.

6. Implementation and Experiments
We built a complete implementation of our synthesis tool.

It consists of about 7K lines of OCaml code implement-
ing the synthesis algorithm (Section 4), incremental model
checker (Section 5), and several interfaces for specifying
network updates. The tool works by building a Kripke struc-
ture (Section 3) and then interacting with the model checker
MC to check switch updates. We provide four MC back-
ends: Incremental uses the incremental algorithm to check
and recheck formulas, Batch uses a labeling technique but
re-labels the entire graph on each call, NuSMV encodes the
current network configuration as a transition relation (sym-
bolic model) and queries NuSMV at each step, and Net-
Plumber uses the incremental network model checker in-
troduced in [Kazemian et al. 2013]. All except NetPlumber
provide counterexamples for falsified properties, so we learn
from the counterexamples when possible (Section 4).
Experimental setup. To evaluate performance of our tool,
we used a 64-bit Ubuntu workstation with 20 GB RAM and
a quad-core Intel i5-4570 CPU (3.2 GHz), conducting exper-
iments on various topologies, configurations, and properties.
We ask (1) whether our tool can solve update problems of
realistic-size, and (2) how it scales. We obtained real/syn-
thetic network topologies, ranging in size from small (5-10
switches) to large (1000+ switches). We used the Topology
Zoo [Knight et al. 2011] dataset, which features 261 actual
wide-area topologies, as well as synthetically constructed
Small-World [Newman et al. 2001] and FatTree [Al-Fares
et al. 2008] topologies, which are often used in datacen-
ters. We then built configurations for these topologies, con-
structed formulas satisfied in the initial/final configurations,
and ran our synthesizer to measure computation time.
Building configurations and properties. To create a con-
figuration for a topology T , we first search for physical
loops. We then randomly select (non-intersecting) loops to
use for source/destination pairs. Each of the loops receives
a source on one side, and a destination on the other, and we
use previously-computed shortest-path information to obtain
two disjoint paths from source to destination, each travers-
ing a different set of waypoint nodes Wi and Wf on the two
sides of the physical loop. This forms a “diamond” structure.
We generate a property for a subset of these diamonds:
• Reachability: traffic from a given source must reach a

certain destination:(port = s1)⇒ F (port = d1)
• Waypointing: traffic must traverse a waypoint w:

(port = s1) ⇒ ((port 6= d1) U ((port = wi) ∧
F (port = d1)))

• Service chaining: traffic must waypoint through several
intermediate nodes:
(port = s1) ⇒ ((port 6= x ∧ port 6= d1) U ((port =
wi) ∧ ((port 6= d1) U ((port = x) ∧ F (port = d1)))))

Once we have one of the above formulas for each chosen
source-destination pair, we use the the conjunction of all the
formulas as the property to be checked.
Incremental vs. monolithic. We compared the performance
of Incremental against NuSMV for the reachability property
(Figure 6 (a-c)). Of the 261 models in the Topology Zoo, our
tool solved all of them more quickly using the Incremental
backend versus the NuSMV one in batch mode. Speedups
were very large, with an average of 651.48x. For the FatTree
examples, average speedup was 1127.23x (36 examples),
and for the Small-World examples, average speedup was
5156.35x (30 examples).

We also compared the performance of the Incremental
and Batch backends using a large number of configurations
(randomly perturbed from the ones in the NuSMV experi-
ment). Batch relabels the entire graph during each model-
checking call, incurring a large performance penalty. Incre-
mental performed better on almost all examples, with aver-
age speedup of 9.95x, 70.38x, 56.46x on the three datasets
shown in Figure 6(d-f). Maximum runtimes for Incremental
were 0.26s, 5.23s, and 2.98s respectively.
Incremental performance We measured the performance of
our Incremental backend versus the fast network property
checker NetPlumber used as a backend (Figure 6(g-i)). It
is important to note that NetPlumber uses rule-granularity
(rather than switch-granularity) for updates, so we have
enabled this in our tool for these experiments. For the
three datasets, our checker was faster on (237/261=90.8%,
13/13=100%, 30/30=100%) of the examples, with overall
average speedups of (8.34x, 6.85x, 15.53x). NetPlumber
does not report counterexample traces, which puts it at a dis-
advantage in this end-to-end comparison, so we also mea-
sured total Incremental runtime vs. total NetPlumber run-
time on the same set of model-checking questions posed
by Incremental for the Small-World example. We were still
faster on 30/30=100%, with an average speedup of 3.23x.
Scalability To quantify scalability of our system, we con-
structed Small World topologies up to 1500 switches, and
experimented with all three types of properties, obtaining re-
sults in Figure 6(j-l). The upper figure (j) shows results for 1
large diamond update (containing about 25% of switches).

The largest example had 1015 nontrivial switches. The
maximum graph generation time was 0.61s, and the maxi-
mum synthesis time was (129.04, 30.11, 0.85)s. Full data is
tabulated in Appendix D. This experiment shows that our
implementation is able to scale to networks of realistic size.
(Switch-)Impossible Updates As mentioned, sometimes
switch-granularity cannot find an update. In Figure 6(k),
we run the same experiment, but generate a second dia-
mond atop the first one, requiring it to route traffic in the
opposite direction. Switch-granularity reports it unsolvable
in maximum time (153.48, 33.48, 0.69)s. We then use rule-
granularity to solve these, and the tool is successful up to
1000 switches in maximum times (793.11, 549.81, 77.91)s.

10

0 50 100 150

0

50

100

150

(a)

Topology Zoo

NuSMV
Incremental

0 50 100

0

50

100

150

(b)

FatTree

0 50 100 150 200

0

50

100

150

(c)

Small World

0 2k 4k 6k
0

2

4

6

8

(d)

R
un

tim
e

(s
) NetPlumber

Incremental

0 1k 2k
0

2

4

6

8

(e)
0 5k 10k 15k

0

20

40

60

80

(f)

0 .5k 1k

0.01

1

100

(g)

Batch
Incremental

0 .5k 1k

0.01

1

100

(h)
0 .5k 1k

0.001

0.1

10

(i)

0 500 1k
0

50

100

150

(j)

Small World

Service Chaining
Waypointing
Reachability

0 500 1k
0

50

100

150

200

(k)

0 20k 40k 60k
0

500

1k

(l)

Figure 6: Experimental results: (a-i) Incr. performance vs. NuSMV, NetPlumber, Batch solvers (rows) on Topology Zoo, FatTree, SmallWorld topologies
(columns); (j) scalability of Incremental on SmallWorld topologies of increasing size; (k) scalability when no correct switch-granularity update exists, and (l)
rule-granularity solving switch-impossible examples of (k). The x-axis is num. of updating items (rules for d-f and l, switches otherwise) and y-axis is runtime.

7. Related Work
This paper extends preliminary work on update synthesis

reported in a workshop paper [Noyes et al. 2013]. We present
a more precise and realistic network model. Our system re-
places expensive calls to an external model checker with
calls to a new built-in incremental network model checker.
We extend the basic DFS search procedure with optimiza-
tions and heuristics that improve performance dramatically.
Finally, we evaluate our tool on a comprehensive set of
benchmarks with real-world topologies.
Network updates. There are many protocol- and property-
specific algorithms for implementing network updates, e.g.
avoiding packet/bandwidth loss during planned maintenance
to BGP [Francois et al. 2007; Raza et al. 2011]. Other
work avoids routing loops and blackholes during IGP mi-
gration [Vanbever et al. 2011]. Work on network updates
in SDN includes Reitblatt et al., who proposed the notion
of consistent updates and several implementation mecha-
nisms, including two-phase updates [Reitblatt et al. 2012].
Other work explores propagating updates incrementally, re-
ducing the space overhead on switches [Katta et al. 2013].
As mentioned in Section 2, recent work proposes ordering
updates for specific properties [Jin et al. 2014], whereas here
we can handle combinations and variants of these properties
as well. Furthermore, SWAN and zUpdate add support for
bandwidth guarantees [Hong et al. 2012; Liu et al. 2013].
Model checking. Model checking has been used to verify
network properties in several recent systems [Al-Shaer and
Al-Haj 2010; Mai et al. 2011; Kazemian et al. 2012; Khur-
shid et al. 2012; Majumdar et al. 2014]. The closest to our

work is NetPlumber [Kazemian et al. 2013], which is incre-
mental. Surface-level differences include the specification
languages (LTL vs. regular expressions), and NetPlumber’s
restriction of checking properties only on probe nodes. The
main difference is incrementality of the model checking:
NetPlumber keeps track of which new paths through the net-
work have been added by an update, and checks the prop-
erties for those. We do not need to check along the whole
length of the path, as we re-use previous model checking
runs. The empirical comparison (Section 6) showed better
performance of our tool as a back-end for synthesis.

Incremental model checking has been studied previously.
Sokolsky and Smolka [1994] present the first incremental
model checking algorithm, for alternation-free µ-calculus.
We consider LTL properties and specialize our algorithm to
exploit the no-forwarding-loops assumption. Chockler et al.
[2011] introduced an incremental algorithm that is specific
to the type of partial results produced by IC3 [Bradley 2011].

8. Conclusion
We present a practical tool for automatically synthesiz-

ing correct network update sequences from formal speci-
fications. We build an efficient incremental model checker
that performs orders of magnitude better than state-of-the-
art monolithic tools. Experiments on real-world topologies
demonstrate the effectiveness of our approach for synthesis.
In future work, we plan to explore both extensions to deal
with network failures and bandwidth constraints, and deeper
foundations of techniques for network updates.

11

References
M. Al-Fares, A. Loukissas, and A. Vahdat. A Scalable, Commodity

Data Center Network Architecture. In SIGCOMM, pages 63–74,
Aug. 2008.

E. Al-Shaer and S. Al-Haj. FlowChecker: Configuration analysis
and verification of federated OpenFlow infrastructures. In Safe-
Config, 2010.

M. Alizadeh, A. Greenberg, D. Maltz, J. Padhye, P. Patel, B. Prab-
hakar, S. Sengupta, and M. Sridharan. Data center TCP
(DCTCP). In SIGCOMM, pages 63–74, 2010.

G. Berry and G. Boudol. The chemical abstract machine. In POPL,
pages 81–94, 1990.

A. Bradley. SAT-based model checking without unrolling. In
VMCAI, 2011.

M. Casado, N. Foster, and A. Guha. Abstractions for software-
defined networks. CACM, 57(10):86–95, Oct. 2014.

H. Chockler, A. Ivrii, A. Matsliah, S. Moran, and Z. Nevo. In-
cremental formal verification of hardware. In FMCAD, pages
135–143, 2011.

N. Foster, R. Harrison, M. Freedman, C. Monsanto, J. Rexford,
A. Story, and D. Walker. Frenetic: a network programming
language. In ICFP, pages 279–291, 2011.

P. Francois and O. Bonaventure. Avoiding transient loops during
the convergence of link-state routing protocols. IEEE/ACM
Transactions on Networking, 15(6):1280–1292, 2007.

P. Francois, O. Bonaventure, B. Decraene, and P.-A. Coste. Avoid-
ing disruptions during maintenance operations on BGP sessions.
IEEE Transactions on Network and Service Management, 4(3):
1–11, 2007.

A. Guha, M. Reitblatt, and N. Foster. Machine-verified network
controllers. In PLDI, June 2013.

C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nan-
duri, and R. Wattenhofer. Achieving high utilization with
software-driven WAN. In SIGCOMM, pages 15–26, Aug. 2012.

S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Hölzle,
S. Stuart, and A. Vahdat. B4: Experience with a globally-
deployed software defined WAN. In SIGCOMM, SIGCOMM
’13, pages 3–14, 2013. ISBN 978-1-4503-2056-6.

X. Jin, H. Liu, R. Gandhi, S. Kandula, R. Mahajan, M. Zhang,
J. Rexford, and R. Wattenhofer. Dynamic scheduling of network
updates. In SIGCOMM, pages 539–550, 2014.

J. P. John, E. Katz-Bassett, A. Krishnamurthy, T. Anderson, and
A. Venkataramani. Consensus routing: The Internet as a dis-
tributed system. In NSDI, pages 351–364, 2008.

N. P. Katta, J. Rexford, and D. Walker. Incremental consistent
updates. In Proceedings of the second ACM SIGCOMM work-
shop on Hot topics in software defined networking, pages 49–54.
ACM, 2013.

P. Kazemian, G. Varghese, and N. McKeown. Header space analy-
sis: Static checking for networks. In NSDI, 2012.

P. Kazemian, M. Chang, H. Zeng, G. Varghese, N. McKeown, and
S. Whyte. Real time network policy checking using header space
analysis. NSDI, pages 99–112, 2013.

A. Khurshid, W. Zhou, M. Caesar, and P. Godfrey. VeriFlow: Ver-
ifying network-wide invariants in real time. ACM SIGCOMM
Computer Communication Review, pages 467–472, 2012.

S. Knight, H. Nguyen, N. Falkner, R. Bowden, and M. Roughan.
The Internet topology zoo. IEEE Journal on Selected Areas in
Communications, 29(9):1765–1775, Oct. 2011.

A. . Lazaris, D. Tahara, X. Huang, L. Li, A. Voellmy, Y. Yang, and
M. Yu. Tango: Simplifying SDN programming with automatic
switch behavior inference, abstraction, and optimization. 2014.

H. H. Liu, X. Wu, M. Zhang, L. Yuan, R. Wattenhofer, and
D. Maltz. zUpdate: updating data center networks with zero
loss. In SIGCOMM, pages 411–422. ACM, 2013.

R. Mahajan and R. Wattenhofer. On Consistent Updates in Soft-
ware Defined Networks. In SIGCOMM, Nov. 2013.

H. Mai, A. Khurshid, R. Agarwal, M. Caesar, P. Godfrey, and S. T.
King. Debugging the data plane with anteater. In SIGCOMM,
pages 290–301, Aug. 2011.

R. Majumdar, S. Tetali, and Z. Wang. Kuai: A model checker for
software-defined networks. In FMCAD, 2014.

N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peter-
son, J. Rexford, S. Shenker, and J. Turner. OpenFlow: enabling
innovation in campus networks. ACM SIGCOMM Computer
Communication Review, 38(2):69–74, 2008.

M. E. Newman, S. H. Strogatz, and D. J. Watts. Random graphs
with arbitrary degree distributions and their applications. Physi-
cal Review E, 64(2):026118, 2001.

A. Noyes, T. Warszawski, and N. Foster. Toward Synthesis of
Network Updates. In SYNT, July 2013.

Open Networking Foundation. Openflow 1.4 specification,
Oct. 2013. URL https://www.opennetworking.org/
sdn-resources/onf-specifications/.

S. Raza, Y. Zhu, and C.-N. Chuah. Graceful network state migra-
tions. IEEE/ACM Transactions on Networking (TON), 19(4):
1097–1110, 2011.

M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and D. Walker.
Abstractions for network update. In SIGCOMM, pages 323–334.
ACM, 2012.

O. Sokolsky and S. Smolka. Incremental model checking in the
modal mu-calculus. In CAV, pages 351–363, 1994.

L. Vanbever, S. Vissicchio, C. Pelsser, P. Francois, and O. Bonaven-
ture. Seamless network-wide IGP migrations. In SIGCOMM,
pages 314–325, 2011.

M. Y. Vardi and P. Wolper. An automata-theoretic approach to
automatic program verification (preliminary report). In LICS,
pages 332–344, 1986.

P. Wolper, M. Y. Vardi, and A. P. Sistla. Reasoning about infinite
computation paths (extended abstract). In FOCS, pages 185–
194, 1983.

12

A. Auxiliary Definitions for Network Model
We first define what it means for a forwarding table to be reachable, i.e. the controller contains an update that will eventually

produce that table.

Definition 7 (Active Forwarding Table). Let N be a network. The forwarding table tbl is active in the epoch ep for the switch
sw if

1. ep = 0 and tbl is the initial table of sw in N , or
2. ep > 0, then (a) if there exists a command (sw ′, tbl ′) ∈ C.cmds such that sw = sw ′ and the number of wait commands

preceding (sw , tbl) in C.cmds is ep, then tbl = tbl ′, (b) if there does not exist such a command, then tbl is the table active
for the switch sw in epoch ep − 1.

Next we define what it means for an observation o to succeed another observation o′.

Definition 8 (Successor Observation). LetN be a network and let o = (sw , pt , pkt) and o′ = (sw ′, pt ′, pkt ′) be observations.

The observation o′ is a successor of o in ep, written o
ep

v o′, if either:

• there exists a switch Si and link Lj such that Si.sw = sw and Si.tbl is active in ep and Lj .loc = (sw , ptj) and
Lj .loc′ = (sw ′, pt ′) and (ptj , pkt ′) ∈ [[Si.tbl]](pt , pkt), or

• there exists a switch Si, a link Lj , and a host h such that Si.sw = sw and Si.tbl is active in ep and Lj .loc = (sw , pt ′) and
Lj .loc′ = h and (pt ′, pkt ′) ∈ [[Si.tbl]](pt , pkt).

Intuitively o
ep

v o′ if the packet in o could have directly produced the packet in o′ in ep by being processed on some switch.
The two cases correspond to an internal and egress processing steps.

Definition 9 (Unconstrained Single-Packet Trace). Let N be a network. The sequence (o1 · · · ol) is a unconstrained single-

packet trace of N if N
o′1−→ . . .

o′k−→ Nk such that (o1 · · · ol) is a subsequence of (o′1 · · · o′k) for which

• every observation is a successor of the preceding observation in monotonically increasing epochs, and

• if o1 = o′j = (sw , pt , pkt), i.e. N
o′1−→ . . .

o′j=o1−−−−→ Nj

o′j+1−−−→ . . .
o′k−→ Nk, then no o′i ∈ {o′1, · · · , o′j−1} precedes o1, and

• the ol transition is an OUT terminating at a host.

Unconstrained single-packet traces are exactly like regular single-packet traces, except they are not required to begin at a host.
We write T̄ (N) for the set of unconstrained single-packet traces generated by N , and note that T (N) ⊆ T̄ (N)

Definition 10 (Network Kripke Structure). Let N be a static network. We define a Kripke structure K(N) = (Q,Q0, δ, λ) as
follows. The set of states Q comprises tuples of the form (sw , pt , Tk). The set of initial states Q0 contains states (sw , pt , Tk)
where sw and pt are adjacent to an ingress link—i.e., there exists a link Lj and host h such that Lj .loc = h and
Lj .loc′ = (sw , pt). The transition relation δ contains all pairs of states (sw , pt , Tk) and (sw ′, pt ′, T ′k) where there exists
a switch S and a link L such that S.sw = sw and either:

• there exists a link Lj and packets pkt ∈ Tk and pkt ′ ∈ T ′k such that L.loc′ = (sw , pt) and Lj .loc = (sw , ptj) and
Lj .loc′ = (sw ′, pt ′) and (pkt ′, ptj) ∈ [[S.tbl]](pkt , pt).

• there exists a link Lj , a host h , and packets pkt ∈ Tk and pkt ′ ∈ T ′k such that L.loc′ = (sw , pt) and Lj .loc = (sw , pt ′)
and Lj .loc′ = h and (pkt ′, pt ′) ∈ [[S.tbl]](pkt , pt).

• (sw , pt , Tk) = (sw ′, pt ′, T ′k) and there exists a packet pkt ∈ Tk such that L.loc′ = (sw , pt) and [[S.tbl]](pkt , pt) = {}.
• (sw , pt , Tk) = (sw ′, pt ′, T ′k) and there exists a link Lj and host h such that Lj .loc = (sw , pt) and Lj .loc′ = h .

Finally, the labeling function λ maps each state (sw , pt , Tk) to Tk, which captures the set of all possible header values of
packets located at switch sw and port pt .

The four cases of the δ relation correspond to forwarding packets to an internal link, forwarding packets out an egress, dropping
packets on a switch (inducing a self-loop), or reaching an egress (also inducing a self-loop).

We can relate the observations generated by a network N and the traces of the Kripke structure generated from it.

Definition 11 (Trace Relation). Let N be a static network and K a Kripke structure. Let . be a relation on observations of N
and states of K defined by (sw , pt , pkt) . (sw , pt , Tk) if and only if pkt ∈ Tk. Lift . to a relation on (finite) sequences of
observations and (infinite) traces by repeating the final observation and requiring . to hold pointwise: o1 · · · ok . t if and
only if oi . ti for i from 1 to k and ok . tj for all j > k.

13

Lemma 4 (Traces of a Stable Network). Let N be a stable network. Then for each trace t ∈ T̄ (N), there exists a trace
t′ ∈ T (N) such that t is a suffix of t′.

Lemma 5 (Trace-Equivalence). Let N1, Nn be static networks where N1 → · · · → Nn and none of the transitions are update
commands. For a single-packet trace t, we have t ∈ T (N1) if and only if t ∈ T (Nn).

Lemma 6 (Induced Sequence of Networks). Let N1 be a static network, and let N ′1 be the network obtained by emptying
all packets from N1. Let cmds be a sequence of commands, and let c1 · · · cn−1 be the subsequence of update commands.
Construct the sequence N ′1 → · · · → N ′n of empty networks by executing the update commands in order. Now, given any
sequence N1 → · · · → Nn induced by cmds , we have Ni ' N ′i for all i.

In other words, any induced sequence of static networks is pointwise trace-equivalent to the unique sequence of network
configurations generated by running the update commands in order.

B. Correctness Proofs for Synthesis Algorithm
Lemma 1 (Network Kripke Structure Soundness). Let N be a static network and K = K(N) a network Kripke structure. For
every single-packet trace t in T (N) there exists a trace t′ of K from a start state such that t . t′, and vice versa.

Proof. We proceed by induction over k, the length of the (finite prefix of the) trace. The base case k = 1 is easy to see, since the
lone observation in t must be on an ingress link, meaning the corresponding state in K will be an initial state with a self-loop
(case 3 of Definition 10), and these are equivalent via Definition 11.

For the inductive step (k > 1), we wish to show both directions of subtrace relation . to conclude equivalence. First, let
t = o1, · · · , ok+1 be a single-packet trace of length k + 1 in T (N), and we wish to show that there exists an equivalent
trace t′ ∈ K(N) such that t . t′. Let tk be the prefix of t having length k. By our induction hypothesis, there exists
t′k = s1, · · · , sk−1, sk, sk, · · · ∈ K(N) such that tk . t′k. Note that we have the successor relation ok v ok+1, so Definition
8 and 10 tells us that we have a transition sk → s′ for some s′ ∈ K. We see that this s′ is exactly what we need to construct
t′ = s1, · · · , sk, s′, s′, · · · which satisfies the relation t . t′.

Now, let t′ = s1, · · · , sk, sk+1, sk+1, · · · be a trace in K(N) for which the finite prefix has length k + 1. We wish to show
that there exists an equivalent t ∈ T (N) such that t . t′. Let t′k = s1, · · · , sk−1, sk, sk, · · · , and by our induction hypothesis,
and there exists tk = o1, · · · , ok such that tk . t′k. Consider the transition sk → sk+1. If sk = sk+1, then t′ = t′k, so
we can simply let t = tk, and conclude that t . t′. Otherwise, if sk 6= sk+1, then we have one of the first two cases in
Definition 10, which correspond to the cases in Definition 8, allowing us to construct an ok+1 such that ok v ok+1. We let
t = o1, · · · , ok, ok+1, and conclude that t . t′.

We want to develop a lemma showing that the correctness of careful command sequences can be reduced to the correctness of
each induced Ni, so we start with the following auxiliary lemma:

Lemma 7 (Traces of a Careful Network). Let N be a stable network with C.cmds careful, and consider a sequence of static
networks induced by C.cmds . For every trace t ∈ T (N) there exists a stable static network Ni in the sequence s.t. t ∈ T (Ni).

Proof. I. First, we show that at most one update transition can be involved in the trace. In other words, if N
o′1−→ . . .

o′k−→ Nk

where t = o1 · · · on is a subsequence of o′1 · · · o′k, and if f : N → N is a bijection between oi indices and o′i indices, then at
most one of the transitions o′f(1), · · · , o

′
f(n) is an UPDATE transition.

Assume to the contrary that there are more than one such transitions, and consider two of them, o′i, o
′
j where i, j ∈

{f(1), · · · , f(n)}, assuming without loss of generality that i < j. Now, since the command sequence C.cmds is careful,
we must have both an INCR and FLUSH transition between o′i and o′j . This means that the second update o′j cannot happen
while the trace’s packet is still in the network, i.e. j > f(n), and we have reached a contradiction.

II. Now, if there are zero update transitions, we are done, since the trace is contained in the first static network N . If there
is a single update transition Nk+1 = Nk[sw ← tbl], and this update occurs before the packet reaches sw in the trace, then the
trace is fully contained in Nk+1. Otherwise, the trace is fully contained in Nk.

Lemma 2 (Careful Correctness). Let N be a stable network with C.cmds careful and let ϕ be an LTL formula. If cmds is
careful and Ni |= φ for each static network in any sequence induced by cmds , then cmds is correct with respect to ϕ.

Proof. Consider a trace t ∈ T (N). From Lemma 7, we have t ∈ T (Ni) for some Ni in the induced sequence. Thus t |= ϕ,
since our hypothesis tells us that Ni |= ϕ. Since this is true for an arbitrary trace, we have shown that T (N) |= ϕ, i.e. N |= ϕ,
meaning that cmds is correct with respect to ϕ.

14

Theorem 1 (Soundness). Given initial network Ni, final configuration Nf , and LTL formula ϕ, if ORDERUPDATE returns a
command sequence cmds , then Ni

cmds−→ N ′ s.t. N ′ ' Nf , and cmds is correct with respect to ϕ and Ni.

Proof. It is easy to show that if ORDERUPDATE returns cmds , then Ni
cmds−→ N ′ where N ′ ' Nf . Each update in the returned

sequence changes a switch configuration of one switch s to the configuration Nf (s), and the algorithm terminates when all
(and only) switches s such that Ni(s) 6= Nf (s) have been updated.

Observe that if ORDERUPDATE returns cmds , the sequence can be made careful by choosing an adequate time delay
between each update command, and for all j ∈ [0, n], Nj |= ϕ. This is ensured by the call to a model checker (Line 7). We use
Lemma 2 to conclude that cmds is correct with respect to ϕ and Ni.

To show that ORDERUPDATE is complete with respect to simple and careful command sequences, we observe that
ORDERUPDATE searches through all simple and careful sequences.

Theorem 2 (Completeness). Given initial network Ni, final configuration Nf , and specification ϕ, if there exists a simple,
careful sequence cmds with Ni

cmds−→ N ′ s.t. N ′ ' Nf , then ORDERUPDATE returns one such sequence.

C. Correctness Proofs for Incremental Model Checking.
Lemma 3. First, for sink states, observe that there is a unique trace t in traces(s), as s is a sink state. We first prove that
t |= ϕ iff Holds0 (s, ϕ). We prove this by induction on the structure of the LTL formula. Then we observe that there is a unique
maximally-consistent set M such that t |= M . This is the set {ψ | t |= ψ ∧ ψ ∈ ecl(ϕ)}. We then use the definition of
HoldsSink(s,M) for sink states to conclude the proof.

Now consider non-sink states: we first prove soundness, i.e., if HoldsK(s,M, labGrK), then there exists t ∈ traces(s) such
that t |= M . We have HoldsK(s,M, labGrK) iff (λ(s) = (AP∩M)) and there exists s′ ∈ succK(M), andM ′ ∈ labGrK(s′)
such that follows(M,M ′). By assumption of the theorem, we have that if M ′ ∈ labGrK(s′), then there exists a trace t′ in
traces(s′) such that t′ |= M ′. Consider a trace t such that t0 = s and t1 = t′. For each formula ψ ∈ M , we can prove that
t |= ψ, which finishes the soundness proof. The base case of the proof by induction is implied by the fact that s |= (AP ∩M).
The inductive cases are proven using the definitions of maximally-consistent set and the function follows . We now prove
completeness, i.e., that if there exists a trace t in tracesK(s) such that t |= M , then HoldsK(s,M, labGrK) is true. Let t be
the trace ss1s2 It is easy to see that if M is a maximally-consistent set, and t |= M , then M = {ψ | ψ ∈ ecl(ϕ)∧ t |= ψ}.
Let us consider the set of formulas S = {ψ | ψ ∈ ecl(ϕ) ∧ t1 |= ψ}. Observe that S is a maximally-consistent set. By
assumption of the theorem, we have that S is in labGrK(s1). It is easy to verify that follows(M,S). This concludes the
completeness proof.

Theorem 3. We first note that only ancestors of nodes in V are re-labeled – all the other nodes are correctly labeled by
assumption on labGr . We say that a node s is at level k with respect to a set of vertices T iff the longest simple path from
s to a node in T is k. Let Hk be the set of nodes at level k from V . We prove by induction on k that at k-th iteration,
(SancestorsK(V)) ∪Hk is a correct labeling of K w.r.t. ϕ and V . We can prove the inductive claim using Lemma 3.

Corollary 1. The result is obtained as a corollary of Theorem 3. Using this theorem, and the fact that the set ancestorsK(Sf)
is the set S of all states K, we obtain that lG = relblK(ϕ, lG0, Sf) is a correct labeling of K with respect to ϕ and S. In
particular, for all initial states s0, we have that for all M ⊂ ecl(ϕ), m ∈ lG(s0) iff there exists a trace t ∈ tracesK(s0) such
that t |= M . We now use the definition of checkInitStates to show that if checkInitStates returns true, then there is no initial
state s0 such that there exists M ∈ lG(s0) such that ¬ϕ ∈ M . Thus for all initial states s0, for all traces t in traces(t0), we
have that t |= ϕ.

The proof for the incremental model checking function is similar.

15

Extended closure of a formula ϕ in NNF:

• true ∈ ecl(ϕ)

• ϕ ∈ ecl(ϕ)

• If ψ ∈ ecl(ϕ), then ¬ψ ∈ ecl(ϕ).
We identify ψ with ¬¬ψ, for all ψ.

• If ϕ1 ∨ ϕ2 ∈ ecl(ϕ), then ϕ1 ∈ ecl(ϕ) and ϕ2 ∈ ecl(ϕ).
• If ϕ1 ∧ ϕ2 ∈ ecl(ϕ), then ϕ1 ∈ ecl(ϕ) and ϕ2 ∈ ecl(ϕ).
• If X ϕ1 ∈ ecl(ϕ), then ϕ1 ∈ ecl(ϕ).
• If ϕ1 U ϕ2 ∈ ecl(ϕ), then ϕ1 ∈ ecl(ϕ) and ϕ2 ∈ ecl(ϕ)

• If ϕ1Rϕ2 ∈ ecl(ϕ), then ϕ1 ∈ ecl(ϕ) and ϕ2 ∈ ecl(ϕ).

The function Holds0 for sink states s:

Holds0 (q, p) = q |= p
Holds0 (q,¬p) = q 6|= p

Holds0 (q, φ1 ∧ φ2) = Holds0 (q, φ1) ∧Holds0 (q, φ2)
Holds0 (q, φ1 ∨ φ2) = Holds0 (q, φ1) ∨Holds0 (q, φ2)

Holds0 (q,Xφ) = Holds0 (q, φ)
Holds0 (q, φ1 U φ2) = Holds0 (q, φ2)
Holds0 (q, φ1 R φ2) = Holds0 (q, φ1) ∨Holds0 (q, φ2)

Maximally-consistent sets M ⊆ ecl(φ)

• true ∈M
• ψ ∈M iff ¬ψ 6∈M . We identify ψ with ¬¬ψ, for all ψ.
• ϕ1 ∨ ϕ2 ∈M iff (ϕ1 ∈M or ϕ2 ∈M)
• ϕ1 ∧ ϕ2 ∈M iff (ϕ1 ∈M and ϕ2 ∈M)

The follows function

• X ϕ1 ∈M1 iff ϕ1 ∈M2

• ϕ1 U ϕ2 ∈M1 iff
(
ϕ2 ∈M1 or (ϕ1 ∈M1 and ϕ1 U ϕ2 ∈M2)

)
• ϕ1Rϕ2 ∈M1 iff

(
ϕ1 ∈M1 or (ϕ2 ∈M1 and ϕ1Rϕ2 ∈M2)

)
Figure 7: Auxiliary definitions for the state-labeling algorithm.

16

D. Experimental Data.
In the following tables, we report File Name, Answer, Number of Switches, Number of Nontrivial (Updating) Switches,

Number of Rules, Number of Nontrivial (Updating) Rules, Graph Generation Time, Model Checking Time, Synthesis Total
Time, Wait Removal Time, and Number of Waits for the scalability results in Figure 6.

“Answer” is a code where 1 means success, 0 means failure (timeout or out-of-memory), and 2 means the update is found
to be impossible.

File Name Answer Sw. (#) Nontriv. Sw. (#) Rl. (#) Nontriv. Rl. (#) Graph Gen. (s) Model Check. (s) Synth. Tot. (s) Wt. Rem. (s) Wt. (#)

sw-100-4.gml 1 100 59 100 59 0.00 0.04 0.05 0.00 2
sw-200-4.gml 1 200 159 200 159 0.05 0.14 0.15 0.02 2
sw-300-4.gml 1 300 208 300 208 0.03 0.52 0.53 0.03 2
sw-400-4.gml 1 400 302 400 302 0.06 1.55 1.58 0.06 2
sw-500-4.gml 1 500 375 500 375 0.09 4.14 4.20 0.10 2
sw-600-4.gml 1 600 432 600 432 0.11 4.27 4.34 0.12 2
sw-700-4.gml 1 700 511 700 511 0.17 8.03 8.13 0.18 2
sw-800-4.gml 1 800 615 800 615 0.26 10.87 11.02 0.31 2
sw-900-4.gml 1 900 687 900 687 0.29 15.68 15.88 0.46 2
sw-1000-4.gml 1 1,000 742 1,000 742 0.24 34.35 34.57 0.34 2
sw-1100-4.gml 1 1,100 825 1,100 825 0.30 43.27 43.66 0.44 2
sw-1200-4.gml 1 1,200 904 1,200 904 0.33 48.25 48.64 0.60 2
sw-1300-4.gml 1 1,300 959 1,300 959 0.30 100.16 100.56 0.53 2
sw-1400-4.gml 1 1,400 1,015 1,400 1,015 0.61 128.46 129.04 0.87 2

Table 1: Data for switch-possible updates, Figure 6(j) (Service Chaining)

File Name Answer Sw. (#) Nontriv. Sw. (#) Rl. (#) Nontriv. Rl. (#) Graph Gen. (s) Model Check. (s) Synth. Tot. (s) Wt. Rem. (s) Wt. (#)

sw-100-4.gml 1 100 59 100 59 0.00 0.02 0.02 0.00 2
sw-200-4.gml 1 200 159 200 159 0.05 0.05 0.06 0.02 2
sw-300-4.gml 1 300 208 300 208 0.03 0.16 0.17 0.03 2
sw-400-4.gml 1 400 302 400 302 0.06 0.43 0.46 0.10 2
sw-500-4.gml 1 500 375 500 375 0.15 0.91 0.96 0.10 2
sw-600-4.gml 1 600 432 600 432 0.11 1.17 1.24 0.12 2
sw-700-4.gml 1 700 511 700 511 0.16 1.90 1.99 0.18 2
sw-800-4.gml 1 800 615 800 615 0.25 2.74 2.88 0.32 2
sw-900-4.gml 1 900 687 900 687 0.27 3.72 3.90 0.38 2
sw-1000-4.gml 1 1,000 742 1,000 742 0.23 7.76 7.96 0.35 2
sw-1100-4.gml 1 1,100 825 1,100 825 0.30 9.12 9.37 0.45 2
sw-1200-4.gml 1 1,200 904 1,200 904 0.37 11.34 11.67 0.60 2
sw-1300-4.gml 1 1,300 959 1,300 959 0.30 19.65 20.03 0.55 2
sw-1400-4.gml 1 1,400 1,015 1,400 1,015 0.59 29.58 30.11 0.89 2

Table 2: Data for switch-possible updates, Figure 6(j) (Waypointing)

File Name Answer Sw. (#) Nontriv. Sw. (#) Rl. (#) Nontriv. Rl. (#) Graph Gen. (s) Model Check. (s) Synth. Tot. (s) Wt. Rem. (s) Wt. (#)

sw-100-4.gml 1 100 59 100 59 0.00 0.00 0.00 0.00 2
sw-200-4.gml 1 200 159 200 159 0.05 0.01 0.02 0.02 2
sw-300-4.gml 1 300 208 300 208 0.03 0.02 0.03 0.03 2
sw-400-4.gml 1 400 302 400 302 0.06 0.03 0.07 0.06 2
sw-500-4.gml 1 500 375 500 375 0.09 0.05 0.13 0.10 2
sw-600-4.gml 1 600 432 600 432 0.11 0.06 0.12 0.12 2
sw-700-4.gml 1 700 511 700 511 0.17 0.09 0.17 0.18 2
sw-800-4.gml 1 800 615 800 615 0.25 0.14 0.28 0.31 2
sw-900-4.gml 1 900 687 900 687 0.26 0.16 0.35 0.38 2
sw-1000-4.gml 1 1,000 742 1,000 742 0.23 0.16 0.35 0.34 2
sw-1100-4.gml 1 1,100 825 1,100 825 0.37 0.20 0.44 0.45 2
sw-1200-4.gml 1 1,200 904 1,200 904 0.38 0.25 0.57 0.60 2
sw-1300-4.gml 1 1,300 959 1,300 959 0.30 0.24 0.58 0.55 2
sw-1400-4.gml 1 1,400 1,015 1,400 1,015 0.59 0.34 0.85 0.88 2

Table 3: Data for switch-possible updates, Figure 6(j) (Reachability)

17

File Name Answer Sw. (#) Nontriv. Sw. (#) Rl. (#) Nontriv. Rl. (#) Graph Gen. (s) Model Check. (s) Synth. Tot. (s) Wt. Rem. (s) Wt. (#)

sw-100-4.gml 2 100 59 100 59 0.00 0.05 0.05 0.00 0
sw-200-4.gml 2 200 159 200 159 0.05 0.17 0.18 0.00 0
sw-300-4.gml 2 300 208 300 208 0.04 0.51 0.52 0.00 0
sw-400-4.gml 2 400 302 400 302 0.09 0.61 0.61 0.00 0
sw-500-4.gml 2 500 375 500 375 0.18 5.04 5.10 0.00 0
sw-600-4.gml 2 600 432 600 432 0.15 3.25 3.27 0.00 0
sw-700-4.gml 2 700 511 700 511 0.22 5.24 5.27 0.00 0
sw-800-4.gml 2 800 615 800 615 0.36 3.23 3.25 0.00 0
sw-900-4.gml 2 900 687 900 687 0.42 8.88 8.93 0.00 0
sw-1000-4.gml 2 1,000 742 1,000 742 0.33 12.91 12.95 0.00 0
sw-1100-4.gml 2 1,100 825 1,100 825 0.39 48.86 49.23 0.00 0
sw-1200-4.gml 2 1,200 904 1,200 904 0.48 8.86 8.89 0.00 0
sw-1300-4.gml 2 1,300 959 1,300 959 0.43 152.90 153.48 0.00 0
sw-1400-4.gml 2 1,400 1,015 1,400 1,015 0.84 68.78 68.93 0.00 0

Table 4: Data for switch-impossible updates, Figure 6(k) (Service Chaining)

File Name Answer Sw. (#) Nontriv. Sw. (#) Rl. (#) Nontriv. Rl. (#) Graph Gen. (s) Model Check. (s) Synth. Tot. (s) Wt. Rem. (s) Wt. (#)

sw-100-4.gml 2 100 59 100 59 0.00 0.02 0.02 0.00 0
sw-200-4.gml 2 200 159 200 159 0.05 0.07 0.07 0.00 0
sw-300-4.gml 2 300 208 300 208 0.04 0.16 0.17 0.00 0
sw-400-4.gml 2 400 302 400 302 0.08 0.21 0.22 0.00 0
sw-500-4.gml 2 500 375 500 375 0.18 1.34 1.40 0.00 0
sw-600-4.gml 2 600 432 600 432 0.16 0.92 0.94 0.00 0
sw-700-4.gml 2 700 511 700 511 0.22 1.31 1.33 0.00 0
sw-800-4.gml 2 800 615 800 615 0.36 0.75 0.77 0.00 0
sw-900-4.gml 2 900 687 900 687 0.40 2.10 2.15 0.00 0
sw-1000-4.gml 2 1,000 742 1,000 742 0.32 3.29 3.32 0.00 0
sw-1100-4.gml 2 1,100 825 1,100 825 0.40 10.10 10.31 0.00 0
sw-1200-4.gml 2 1,200 904 1,200 904 0.53 2.07 2.10 0.00 0
sw-1300-4.gml 2 1,300 959 1,300 959 0.41 32.92 33.48 0.00 0
sw-1400-4.gml 2 1,400 1,015 1,400 1,015 0.82 16.28 16.43 0.00 0

Table 5: Data for switch-impossible updates, Figure 6(k) (Waypointing)

File Name Answer Sw. (#) Nontriv. Sw. (#) Rl. (#) Nontriv. Rl. (#) Graph Gen. (s) Model Check. (s) Synth. Tot. (s) Wt. Rem. (s) Wt. (#)

sw-100-4.gml 2 100 59 100 59 0.00 0.00 0.00 0.00 0
sw-200-4.gml 2 200 159 200 159 0.06 0.01 0.01 0.00 0
sw-300-4.gml 2 300 208 300 208 0.04 0.01 0.02 0.00 0
sw-400-4.gml 2 400 302 400 302 0.08 0.01 0.01 0.00 0
sw-500-4.gml 2 500 375 500 375 0.18 0.03 0.08 0.00 0
sw-600-4.gml 2 600 432 600 432 0.15 0.01 0.03 0.00 0
sw-700-4.gml 2 700 511 700 511 0.22 0.02 0.05 0.00 0
sw-800-4.gml 2 800 615 800 615 0.37 0.01 0.03 0.00 0
sw-900-4.gml 2 900 687 900 687 0.39 0.03 0.08 0.00 0
sw-1000-4.gml 2 1,000 742 1,000 742 0.32 0.03 0.06 0.00 0
sw-1100-4.gml 2 1,100 825 1,100 825 0.41 0.08 0.26 0.00 0
sw-1200-4.gml 2 1,200 904 1,200 904 0.52 0.02 0.05 0.00 0
sw-1300-4.gml 2 1,300 959 1,300 959 0.41 0.13 0.69 0.00 0
sw-1400-4.gml 2 1,400 1,015 1,400 1,015 0.82 0.07 0.23 0.00 0

Table 6: Data for switch-impossible updates, Figure 6(k) (Reachability)

18

File Name Answer Sw. (#) Nontriv. Sw. (#) Rl. (#) Nontriv. Rl. (#) Graph Gen. (s) Model Check. (s) Synth. Tot. (s) Wt. Rem. (s) Wt. (#)

sw-100-4.gml 1 100 59 620 579 0.00 0.36 0.38 0.05 204
sw-200-4.gml 1 200 159 2,869 2,828 0.06 2.59 2.92 0.68 852
sw-300-4.gml 1 300 208 4,349 4,256 0.04 7.65 8.29 1.23 1,355
sw-400-4.gml 1 400 302 9,972 9,874 0.10 33.94 36.22 4.58 2,702
sw-500-4.gml 1 500 375 14,862 14,737 0.22 89.12 95.55 10.09 4,283
sw-600-4.gml 1 600 432 15,754 15,585 0.18 110.81 117.26 9.93 4,400
sw-700-4.gml 1 700 511 22,698 22,509 0.27 204.59 217.36 18.75 7,713
sw-800-4.gml 1 800 615 38,561 38,376 0.41 422.71 450.86 51.58 10,219
sw-900-4.gml 1 900 687 44,153 43,940 0.48 499.78 530.97 55.85 9,544
sw-1000-4.gml 1 1,000 742 37,283 37,024 0.33 760.93 793.11 41.95 11,762
sw-1100-4.gml 0 0 0 0 0 0.00 0.00 900.00 0.00 0
sw-1200-4.gml 0 0 0 0 0 0.00 0.00 900.00 0.00 0
sw-1300-4.gml 0 0 0 0 0 0.00 0.00 900.00 0.00 0
sw-1400-4.gml 0 0 0 0 0 0.00 0.00 900.00 0.00 0

Table 7: Data for rule-granularity, Figure 6(l) (Service Chaining)

File Name Answer Sw. (#) Nontriv. Sw. (#) Rl. (#) Nontriv. Rl. (#) Graph Gen. (s) Model Check. (s) Synth. Tot. (s) Wt. Rem. (s) Wt. (#)

sw-100-4.gml 1 100 59 620 579 0.00 0.13 0.15 0.04 204
sw-200-4.gml 1 200 159 2,869 2,828 0.05 1.07 1.36 0.62 852
sw-300-4.gml 1 300 208 4,349 4,256 0.04 2.42 2.94 1.07 1,355
sw-400-4.gml 1 400 302 9,972 9,874 0.08 10.35 12.22 4.09 2,702
sw-500-4.gml 1 500 375 14,862 14,737 0.18 23.01 27.79 8.87 4,283
sw-600-4.gml 1 600 432 15,754 15,585 0.15 29.82 34.57 9.01 4,400
sw-700-4.gml 1 700 511 22,698 22,509 0.22 49.63 58.85 15.97 7,713
sw-800-4.gml 1 800 615 38,561 38,376 0.36 96.75 118.54 42.15 10,219
sw-900-4.gml 1 900 687 44,153 43,940 0.41 123.56 152.17 53.25 9,544
sw-1000-4.gml 1 1,000 742 37,283 37,024 0.33 181.77 206.53 36.90 11,762
sw-1100-4.gml 1 1,100 825 55,439 55,164 0.41 242.89 282.80 67.39 16,766
sw-1200-4.gml 1 1,200 904 57,464 57,167 0.55 319.71 376.71 126.60 16,947
sw-1300-4.gml 1 1,300 959 55,827 55,486 0.50 484.68 549.81 97.95 18,625
sw-1400-4.gml 0 0 0 0 0 0.00 0.00 0.00 0.00 0

Table 8: Data for rule-granularity, Figure 6(l) (Waypointing)

File Name Answer Sw. (#) Nontriv. Sw. (#) Rl. (#) Nontriv. Rl. (#) Graph Gen. (s) Model Check. (s) Synth. Tot. (s) Wt. Rem. (s) Wt. (#)

sw-100-4.gml 1 100 59 620 579 0.00 0.03 0.06 0.04 204
sw-200-4.gml 1 200 159 2,869 2,828 0.05 0.29 0.58 0.62 852
sw-300-4.gml 1 300 208 4,349 4,256 0.04 0.47 0.99 1.08 1,355
sw-400-4.gml 1 400 302 9,972 9,874 0.08 1.60 3.60 4.11 2,702
sw-500-4.gml 1 500 375 14,862 14,737 0.19 2.98 8.00 8.91 4,283
sw-600-4.gml 1 600 432 15,754 15,585 0.15 3.05 7.94 8.81 4,400
sw-700-4.gml 1 700 511 22,698 22,509 0.22 5.36 14.43 15.63 7,713
sw-800-4.gml 1 800 615 38,561 38,376 0.35 12.88 34.00 40.37 10,219
sw-900-4.gml 1 900 687 44,153 43,940 0.40 15.96 42.55 51.67 9,544
sw-1000-4.gml 1 1,000 742 37,283 37,024 0.33 11.51 35.26 35.08 11,762
sw-1100-4.gml 1 1,100 825 55,439 55,164 0.40 18.70 56.48 64.92 16,766
sw-1200-4.gml 1 1,200 904 57,464 57,167 0.56 26.70 77.91 89.05 16,947
sw-1300-4.gml 1 1,300 959 55,827 55,486 0.42 20.50 70.28 69.75 18,625
sw-1400-4.gml 0 0 0 0 0 0.00 0.00 0.00 0.00 0

Table 9: Data for rule-granularity, Figure 6(l) (Reachability)

19

