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Background

@ Android is a popular smartphone OS designed by Google

@ Android is designed for security

App 1 App 2
VM VM
OS Process OS Process
| Linux kernel |

e Linux-based OS in which each application runs on a VM in its
own process
e Each application has unique user ID, preventing them from
interacting maliciously
e Explicit user permission is required for apps to access devices
@ Android’s virtual machine is called Dalvik
@ Dalvik bytecode is similar to Java bytecode, with one major
difference being its register-based (rather than stack-based)
architecture
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Problem Statement

@ Android can still be vulnerable to several types of malware [3]
@ Some attacks take advantage of user’s haste or carelessness

@ A specific attack of this form which we seek to address is the
following:

Malware strategy

Obtain blanket permission to use SMS messaging, and then incur
messaging fees or subscribe to “premium” services without the
user's knowledge

@ This type of attack can be detected using various program
analyses [1]
e Dynamic analysis — this is fast, but focuses on a limited
number of program execution paths
e Static analysis — this can cover all execution paths, but can be
very slow as program complexity increases
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Symbolic Execution

@ A hybrid solution: symbolic execution
@ Instead of running an application on the VM with concrete
input/output, we can execute it using symbolic 10:

Concrete Execution

Symbolic Execution

x = readint(); x = readint();

// wait for int, e.g. "5" // x is now symbol A
b =10 + x; b =10 + x;

b *= 2; b *= 2;

return b; return b;

// result: 30 // result: 2*x(10+A)

v

@ This approach “executes’ the program in a limited number of
symbolic paths, so approximates the speed of dynamic
analysis while covering more actual paths

@ It focuses on collecting constraints rather than values, so it's
faster than static analysis
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Detecting Threats via Symbolic Execution

@ Assuming we are trying to detect calls to unexpected SMS
messaging, consider the following code:

y = 5;

x = getchar();

if (2%x == -1) {
sendSMS (evilPhoneNumber, "subscribe");
return 1;

}

return O;

@ Let's say in our concrete execution, we got the character 'z’
from the keyboard... so, x = 122 meaning the body of the if
statement will be skipped (overlooked threat!)

@ Symbolic execution would find that the body is evaluated iff
2x =5—1, i.e. x =2 (potential threat found!)
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Assembly Code Parser

@ Our symbolic execution system works at the Dalvik assembly
code level

@ Android applications are distributed as APK files, which can
be decompiled using apk-tool /smali

.class public Lcom/myspace/android/MySpace;
.super Landroid/app/Activity;
.source "MySpace.java"

application
(MySpace)

.method private openHomePage()V
.locals 2

class
(MySpace)

method
void openHomePage()

.prologue
new-instance v0, Landroid/content/Intent;

method
void <init>()

instruction
(new-instance)

const-class v1l, Lcom/myspace/android/pages/HomePage;

instruction
(const-class),

instruction
(const/4)

invoke-direct {v0, pO, vi},
Landroid/content/Intent;-><init>(Landroid/content/Context;
Ljava/lang/Class;)V

.local vO, myIntent:Landroid/content/Intent;
const/4 v1, 0x0

v

e The instructions (and structural directives provided by
apk-tool/smali) are parsed into an abstract syntax tree (AST)
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Operational Semantics

@ In order to generate the symbolic constraints as we process
the assembly code, we need to have a formal semantics for
Dalvik bytecode

@ Dalvik instructions are fairly low-level, so it is relatively
straightforward to develop a formal semantics for Dalvik
bytecode [2]

@ Using a similar approach, we are building a structural
operational (i.e. compositional) semantics

(nop, (H, R. pc)) — (H, R, pc 1)
a:int b :int c:int
(add-intabc,(H,R,pc)) — (H, R[a— [b] + [c]], pc + 1)
(51,(H,R, pc)) — (H', R, pc’)
<5152’ (H, R, pC)> — <527 (H/a R, pcl)>
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Symbolic Code Generation, Simulation, and Checking

@ The parser and semantics are almost finished, and then we
can implement the symbolic execution engine

@ This module will load the AST representation of the
application and symbolically execute it with respect to the
operational semantics

@ To make this more manageable, we will instrument the
bytecode (i.e. AST) with symbolic functionality, instead of
building an interpreter from scratch

@ The Dalvik VM (possibly via the Android emulator) will then
be used to perform the symbolic simulation by simply running
the recompiled APK file and generating a logfile with symbolic
constraints for each instruction of interest

o Finally, we will implement a checker by sending the constraints
and the properly-structured assertion to a model checker
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Overall System Architecture

The box on the right is the “core” of the symbolic simulator:

operational,
semantics

Android
emulator
(Dalvik VM)

“yes® or
countermodel

model
checker

@ The Parser loads the Dalvik code into a data structure

@ The Symbolic Code Generator instruments the parsed code
using the symbolic constraint propagation rules

@ The Constraint Solver checks the property with respect to
constraints generated by running the instrumented application
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Conclusion

@ Security issues can arise in Android due to unexpected use of
user information

@ These types of information leaks can be detected by program
analysis

@ We seek to detect a simple set of events efficiently by
symbolic simulation of Dalvik bytecode

@ This type of functionality could be integrated quite smoothly
into the Dalvik VM itself, offering a higher level of security
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