
Detecting Android Privacy
Leaks via Dynamic Taint

Analysis
Jedidiah McClurg, Jonathan Friedman, William Ng

Mentor: Vaibhav Rastogi

Northwestern University

May 28, 2012

Background

● Smartphone shipments increased 42%
between 3Q 2010 and 3Q 2011 (Gartner,
11/15/2011)

● Users are increasingly relying on
smartphones to manage their personal life
○ Storing and managing contact information of

families and friends
○ Reading and keeping up-to-date with personal email

on-the-go
○ Using third party application to either provide

navigational directions or manage bank accounts

Smartphones store a lot of
important information
● For each function, smartphones use and

store important personal information of the
user. For example:
○ Contact information of friends and families
○ Phone call and text message history
○ Personal emails
○ Browsing history
○ Geographical location
○ Bank account login information
○ Credit card information

Malicious applications can
abuse personal information
● Android permissions are vague and

complicated to the end user
○ SD card access gives access to everything on the SD

card
● It is hard for the user to keep track of how

information is being used inside a third-
party application

● Malicious applications can either misuse
user personal information or leak it to
certain destinations

Project Goals

● Keep track of sensitive information and alert
the user whenever sensitive information is
being leaked from the device (via phone or
SMS)

● Create an Android-based system which does
not require special permissions or rooting
(in contrast to prior research, which requires
these features)

Existing work

● Existing research in dealing with this
problem:
○ PiOS [Egele et al., NDSS '11]

■ Leaks in iOS applications
○ TaintDroid [Encl et al., OSDI '10]

■ Leaks in Android applications

Our approach

● We focus on Android information leaks
● We implemented a Java application that can

insert Dalvik bytecodes into targeted android
applications. The leak detection then
happens dynamically as the app executes

● It doesn't require root access
● The privacy information are tracked

dynamically during runtime of the modified
android applications

Compatibility with Android

We have created a proof-of-concept App which:
1. Looks for any application package files in

two folders: /system/app and /data/app
2. Lists all the contained package files
3. Reads binary data from an APK file
4. *Convert the APK into Smali assembly code

and back using baksmali/smali.
*Converting the smali/baksmali JAR files into android dex files is prohibitively slow in
Eclipse. Each compilation takes over 30 minutes, which means we are doing development
using a PC-based Java app instead. There should be no difference between the two.

System Overview

Instrumented
App (APK)

Android
App
(APK file)

Parser /
Code Gen.

apktool
decompile

apktool
compile

● The system produces a new APK which is
functionally equivalent to the old APK, but
contains its own taint tracking functionality

Running the Analysis

Dalvik VM

Taint
class

● The instrumented application is executed on the device
● Based on the individual taint semantics for each instruction,

the program will communicate taint information with the Taint
class

● The Taint class will alert us regarding privacy leaks

Thread

Thread
Console

Instrumented
App

Android Decompilation

● The apktool is used to disassemble the APK
file into human-readable "smali" files

● One issue is that method parameters are
placed after local registers

○ To use extra registers, our code instrumentations
must increase the local register count

○ But this changes the position of the params,
breaking the code

○ Solution: upon method invocation, shift the params
to lower-numbered registers

t1 t2 t3 t4 t5 t6 t7 t8 t9 . . .

Taint Tracking

● Every object contains a taint value, consisting of a flag
for each taint source

● The Taint class contains related functionality:
○ Repository for taint information
○ Specification of taint sources
○ Fine-grained semantics for library methods

● The instrumented application passes references to Taint
class to propagate/update their values

Code Instrumentation

● Each instruction is accompanied by a taint
value update/propagation

● The instruction sget-object vX, T is followed
by a check on T. If T is a taint source, then
vX is tainted

● The instruction
invoke-virtual {vA, vB, ...}, S->m()X
causes vA,vB,... to acquire the union of all
their taint values

Live Demo

● Using this basic level of code
instrumentation, we have analyzed the Last.
fm application

● Defined taint sources (fields)
○ Landroid/os/Build;->MODEL:Ljava/lang/String;
○ Landroid/os/Build$VERSION;->RELEASE:Ljava/lang/String;
○ Lfm/last/android/activity/Profile;->mUsername:Ljava...

● Defined leak rules
○ If "u" is tainted, then u.openConnection() is a

privacy leak
○ If "s" tainted, then con.setRequestProperty(s) is a

privacy leak

Work to be done before final
report
● Finish the taint propagation

semantics/instrumentation for each
instruction

● Benchmark the instrumented code
● Try to find a way to speed up the Eclipse

build so that we can use smali/baksmali
from our Android app

Work division among team
members
● Jonathan Friedman: created the front-end

Android application which will house our
taint analysis algorithm and test
permissions.

● William Ng: created the Smali code to be
inserted into targeted applications to track
taint information

● Jedidiah McClurg: wrote the Java code to
analyze the applications and instrument the
code based on taint propagation semantics
and user input

Future Considerations

● Going beyond a proof of concept and
creating a fully integrated application that is
consumer friendly.

● Fleshing out taint tracking in android system
calls

● Creating an alternate version that takes
advantage of rooted phones

Conclusion

● We have demonstrated that it is possible to
create a system which does taint tracking
without special permissions or rooting

● Our system is extensible, and allows for
more complex tracking

● We have found information leaks in well-
known Android marketplace apps

