Virtual Machine Support for Parallel Language Runtimes

Jedidiah McClurg

Kaicheng Zhang

Yixi Zhang

{jrmcclurg, kaichengzhang2016, yixizhang2012}@u.northwestern.edu

Dept. of EECS
Northwestern University
Evanston, IL 60202

ABSTRACT

Palacios is an open-source virtual machine monitor (VMM)
which targets the x86 and x86_64 architectures. Kitten is
a lightweight operating system based on Linux which is de-
signed to operate on supercomputer nodes. Palacios can
be embedded into the Kitten OS to provide a virtual ma-
chine environment on these nodes. This offers a very flex-
ible and extensible environment for running parallel appli-
cations. One family of parallel applications with increasing
importance is that of programming language runtimes such
as Racket. Racket offers two forms of parallelism called fu-
tures and places, and we seek to test the operation of these
on top of a virtualized minimal OS such as Kitten. To ac-
complish this goal, we produced a modified Kitten OS with
support for the system calls involved in these parallel con-
structs. We also customized Racket to run in the virtual
filesystem (VFS) environment of Kitten. Finally, we success-
fully ran some parallel Racket examples on top of a Kitten
OS virtualized in Palacios. In this paper, we present some of
the techniques and difficulties involved in providing this sup-
port for parallel language runtimes at the OS-level, as well
as some ideas for future customizations at the VMM-level
which could offer better performance.

Categories and Subject Descriptors

H.4 Information Systems Applications|: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—-complezity mea-
sures, performance measures

General Terms
Experimentation

Keywords
Palacios, Racket, Kitten OS, Virtual Machine Monitor

1. INTRODUCTION

As we are entering the era of parallel computing, support
to parallelism in both OS and programming languages are

increasingly required. From supercomputers to personal ma-
chines, multi-core architectures are taking the place. Pro-
grams are expected to exploits this parallelism when possi-
ble, and accordingly, programming languages are beginning
to offer built-in constructs which allow programmers to do
this more naturally. Especially the functional programming
languages, whose immutable style is more suitable to speed
up parallel applications, are receiving more requests to sup-
port parallelism and make it easy to harness the power on
supercomputers.

In this report, we talk about our work in this year’s Virtu-
alization course, which was intended to obtain the concrete
answers to the question: what exactly is needed at the OS
and (virtual) machine level to support the runtime system
for such a language, by doing the following;:

e Identify a minimalist environment which could con-
ceivably support a parallel language runtime.

e Port the Racket language runtime to this minimal OS.

e Add necessary OS-level functionality to support Racket
parallelism constructs.

e Test the setup running on a virtual machine.

This provided us with an understanding of the features that
are unique to parallel language runtimes system, and point
us towards ways of improving the cooperation between the
OS/hardware and the runtime system.

2. BACKGROUND

In this section, we will introduce the background informa-
tion of the Kitten OS, Virtual Machines, Palacios virtual
machine monitor, and Racket language with its parallelism
models and implementations. Besides, we will talk about
the current situation of running parallel applications writ-
ten and run in Racket on top of Kitten. These are related
to our work and also our future researches.

2.1 Kitten

Lightweight kernel (LWK) is developed to run on supercom-
puters and enhanced to provide necessary support for par-
allel applications and consumes the minimum amount of re-
sources it needs. Kitten OS is one of the custom lightweight

’s

kernel compute node operating system in this category, in-
vented and actively updated by Sandia Corporation. Actu-
ally, it’s not the first LWK developed by Sandia. Like its
prior LWKs (SUNMOS, Puma, Cougar, and Catamount),
Kitten is designed to target the extremely parallel and scal-
able distributed-memory machines within the tightly-coupled
network, and especially focuses on the fast message pass-
ing and execution. However, what makes Kitten outstand-
ing from its prior LWKs, is that it provides a more Linux-
compatible user environment, with a smaller and more man-
ageable code base, which also provides the foundation for
any further functional extension[11].

We choose Kitten as the target OS to port Racket’s runtime
system, not only because Kitten has a more user friendly
Linux-compatible environment, but also because Kitten sup-
ports parallelism naturally by linking its user-applications

with the standard GNU C library, which includes the Pthreads

implementation. More than that, since compilers usually
build the OpenMP support on top of Pthreads, Kitten also
has the functionality to run applications employ OpenMP.
Unfortunately, Kitten lacks many essential supports to port
Racket easily, such as the support to shared libraries, and
the functionality of console read, etc. However, as a custom
lightweight kernel, Kitten can be either run as the host OS
with the embedded virtual machine monitor Palacios, or as
the guest OS on top of typical Linux distributions[10].

22 VM

Supercomputers usually run thousands or millions of Linux
kernels, all of which runs as a virtual machine on its dis-
tributed nodes. The virtual machine here is a shorten phrase
of the system virtual machine, which could provides several
advantages, such as, multiple OS environments can co-exist
inter-independently on the same computer; virtual machine
can provides an instruction set architecture which is differ-
ent from that of the host machine; and because it’s isolated
from the host OS and other virtual machines, maintenance
and recovery can be much easier and portable[8].

However, since a virtual machine does not access the hard-
ware directly, its efficiency is typically lower than the host
OS directly runs on the hardware. Either the multiple vir-
tual machines concurrently running on the same hardware
could expect stable performances, because its performance
highly depends on the workload from the other virtual ma-
chines[8]. In these circumstances, certain virtual machine
monitors need to come in the place to use proper techniques
to solve these problems.

2.3 Palacios

If we want to run Kitten as a guest on top of Palacios, we
need to first compile Palacios as an embedded kernel module
into a host OS. However, the host OS needs only minimal
functionality for Palacios to work[9], so it’s also feasible to
compile Kitten, or other certain custom lightweight kernel
with Palacios as the host OS.

Even though Palacios does not naturally support to run with
another VMM concurrently on the same machine, it can be
configured to run solely on any certain physical core(s)[9],
which makes it feasible to have Palacios run with other
VMM at the same time. However, Palacios currently have

some issues regarding hardware supports, so it raised some
difficulties when we were testing our custom Kitten ISO as
a guest on Palacios.

In our work, we compiled Palacios with Fedora 15 and tried
running Kitten as guest on top of Palacios. As Palacios
is designed as highly configurable, the embedding process
requires no source code change to the host kernel, and only
small part of changes to the configuration[9]. The detailed
steps is included in the appendix and has been pushed to
the project repo.

2.4 Racket

The power of Racket[5] is known for its extensive macro sys-
tem[3], using which, programmers can write highly concise
embedded or domain-specific languages. The pattern match-
ing function[4] and the define-type macro[l] in the built-in
plai programming language can support very complicated
parsing work and user-defined data structures. These fea-
tures simplify the writing of state machine dispatching and
other many more expensive work processes. As we have ex-
perienced, using the Racket system to write a compiler with
the possible employment of typed racket language[7] is a
very straightforward work. The Lisp/scheme read function
and the first contract system that works for higher-order
values such as first-class functions would save many of the
programmers’ effort[6].

Because of the immutation feature, functional programming
languages are very suitable for parallel applications. There-
fore, it’s very exciting if we can add the necessary functional-
ities for Racket’s parallelism models to run on the minimal
OS like Kitten. So that scientists will have the chance to
write scientific-purpose parallel applications, with the pow-
erful macro system and many other functionalities that have
been mentioned above.

Racket uses a bytecode compiler[6], which means it first
compiles the program into bytecode which runs on its own
Racket virtual machine. And the bytecode could be further
compiled using a Just-in-time compiler at the runtime. The
Racket system also has an interpreter. The racket command
accepts either console input via the interactive read-eval-
print loop, or input from source files. This is the point we
will focus on to add the necessary support for Kitten to run
the racket interpreter and its parallel applications on top of
it.

2.5 Futures

Racket, like many other scripting and dynamic languages,
its runtime system was originally designed to run as a single
thread. Even though Racket supports constructs for con-
currency, it’s implemented through co-routines. So namely,
Racket used to have no parallelism support on hardwares
with multiple processors[12].

The recently added feature, Futures, exploits the chance
that to run the safe portion of the racket programs in par-
allel, with the minimal changes to Racket’s highly enhanced
runtime system[12]. Basically, you can use the future func-
tion to start a parallel computation and use the touch func-
tion to receive its result. The detailed format and descrip-
tion could be found on the Rackets documentation page.

Here we have the sample function shown in the paper of
James Swaine, et al.[12].

(define (f x y)
(let ((s (future (lambda () (+ x y))))
((@ (future (lambda () (- x y))))
(x (touch s) (touch d))))

Because the main function can proceed in parallel to a fu-
ture, the function above could also be written as[12]:

(define (f x y)
(let ((d (future (lambda () (- x y)))))
(x (+ x y) (touch d))))

The later one is the template of the test programs that we
use in our work. Our goal is to add the necessary functional-
ities that Kitten lacks to run this program in the interactive
console environment.

The Futures implementation divides all kinds of operations,
with consideration of its arguments as well, into different
categories: safe, unsafe, and synchronized. It’s based on the
assumption that programmers, if not all, mostly share the
same observation, that the portion could benefit the most
from parallelism, has few side effects in the language imple-
mentation’s internal state[12].

Futures builds its support for parallelism on Pthreads. Be-
cause Kitten has included the Pthreads implementation via
the standard GNU C library, we don’t have to add any ad-
ditional functionality, except to make sure that threads run
correctly on Kitten, in order to have Futures run as ex-
pected. Futures has done more work on the safety cate-
gorization, handling different categories of operations, and
adjustment on memory management, but we are not going
to include them in our report, since these detailed imple-
mentation theory is not related to our work to make it start
to run[12].

2.6 Places

Last year, Racket added a new feature called Places to sup-
port message-passing parallelism. A sample fibonacci paral-
lel function from the paper of Kevin Tew, et al.[13]. could
be used to demonstrate the typical pattern to use Places.

(define (fib n))

(define (start-fib n)
(define p
(place ch
(define n (place-channel-get ch))
(place-channel-put ch (fib n))))
(place-channel-put p n)
p)

The place function is used to create a place that run its
body expressions, and the ch is a descriptor bound to a
place channel.

Now, as we have the start-fib function, we can use it to start
two fibonacci computationion in parallel[13]:

(define pl (start-fib nl))

(define p2 (start-fib n2))

(values (place-channel-get pl)
(place-channel-get p2))

This sample function is a demonstration of the place and
place-channel-get/put function that we used in our test
program. A more detailed description of Places could be
found on the Racket documentation page.

As we have stated in the section of Racket, its define-type
macro is useful to write very concise user defined data struc-
tures. So it is expected that Racket programmers will lever-
age this feature very frequently. If so, the traditional way to
adding message-passing parallelism to a language by explor-
ing the unix fork () primitive is this scenario, since that will
limit the communication, and make the abstraction more dif-
ficult[13]. So the implementation of Places is directly inside
the runtime system.

The architecture of Places’ implementation, is that Racket
starts with a single place, and with Places function, it can
generate more than one places, and each of them has a local
garbage collector. Besides transforming most global vari-
ables into thread-local variables, more work needs to be
done in implementations of place channels and OS page-
table locks[13].

As the work of Kevin Tew, et al.[13]. has shown, the Racket’s
garbage collector uses the OS-implemented mprotect () func-
tion to implement write barriers. However, as the latest Kit-
ten code base shows, the mprotect () implementation in Kit-
ten is not fully functional, which is simply stubbed out yet
does not do any real work. So if we want to make Racket’s
Places function, or more generally, any function that will in-
voke Racket’s garbage collector (parallel functions are sup-
posed to be in this category, since we intend to run pro-
grams that are complicated and also memory consuming in
parallel, as performance increasing is the goal), run as ex-
pected on top of Kitten, a more functional implementation
of mprotect () is required[2].

2.7 Racket on Kitten

Racket does not run on Kitten out of box. As we’ll give
more detailed explanation in the following sections, porting
Racket’s runtime system has many difficulties according to
the minimalism of Kitten inherited from all its prior LWKs.

Basically, Kitten does not support shared libraries, access to
physical disks, console read, pipes, and many other system
call implementations. All these are necessary for the running
of Racket and its parallelism models on top of Kitten. As
we present in the following sections, by increasingly adding
the missing functionalities to Kitten OS, we have achieved
a better understanding of parallel language runtime system,
and its cooperation with the OS/hardware.

3. CONTRIBUTIONS

Our project succeeded in laying the groundwork for future
study in the area of virtual machine support for parallel lan-
guages. The specific ways that we have contributed include
the following.

e Compiled Racket as a static binary and connected it
with the Kitten ISO image

e Added support for console input in Kitten

e Added support for instantiating a directory tree in the
Kitten VFS (Racket collections)

e Implemented needed system calls in Kitten
e Worked on debugging Racket memory issues
e Implemented pipes in Kitten

e Tested Racket running in a Kitten guest on top of Pala-
cios

The next section of this paper discusses these items in detail.

4. PORTING RACKET TO THE KITTEN OS

Before we can do experimentation regarding parallel lan-
guage runtimes in the context of a virtual machine, it is
necessary to port such a runtime to a guest OS which is
suitable for testing. Thus, we focus on porting Racket to
run on the Kitten OS. Overall, this is a relatively straight-
forward process, but there are many subtleties/difficulties
along the way, so we present these here.

4.1 Static Racket Binary

The Kitten OS does not have a straightforward method for
supporting shared libraries. Thus, it was necessary to build
Racket from source and link statically. This involved some
changes to the standard configuration, so we describe our
build procedure here.

First, we clone the PLT Git repository
git clone git://git.racket-lang.org/plt.git

Then, entering the plt directory, we configure for a static
build

./configure --disable-gracket CFLAGS="-g -02 -static"

LDFLAGS="-static -lpthread -1lc"
--enable-cgcdefault

(adding the "—export-dynamic” option to LDFLAGS is pur-
ported to make static builds work with dlopen(), which could
allow the Racket dynamic-require to work, but so far that
does not appear to be the case).

Now, entering the src/racket directory and executing make
and make install will build the static binary racket in the
plt/bin folder.

Kitten allows a binary having the name init_task to be
packaged into the ISO image during the Kitten build. This

binary will then be started by Kitten upon OS boot. Thus,
we need to copy the racket binary from the plt/bin folder
into the kitten folder and rename it to init_task. We edit
the Kitten Makefile to do this automatically before each
build.

4.2 Kitten Console Input

Kitten previously had console write, but no read. Since we
wanted to use Racket interactively from a VM console, we
found it useful to implement support for console input. The
following diagram shows an overview of how this function-
ality is structured.

Console I/0

Console
Device Drivers

Keyboard Driver

(devfs.c) Console Support (keyboard.c)
Read () 1> (Consccs Key-code Keyboard Interrupt
Function [€—— | Input Processing

Buffer

Figure 1: Console Input for Kitten

First, Keyboard interrupts are intercepted by the keyboard
driver in keyboard.c. Previously, this driver simply printed
an alert regarding the interrupt, so we had to add the key
handler here.

The first step in the key handler is to process the key-code
in order to determine the actual key character. We adapted
this key-code processing functionality from the open-source
GeekOS. After the key’s corresponding character is deter-
mined, the character is sent to the console support module
via our function console_inbuf_add.

The console_inbuf_add function in console. c allows a char-
acter to be added to the input buffer. At this point, special
care must be taken to avoid problems when multiple threads
are accessing this buffer. We do this by invoking the Kit-
ten spin_lock_irgsave function before accessing the buffer,
and then calling spin_lock_irqrestore after we have fin-
ished modifying the buffer. This ensures that other threads
will wait for the buffer resource appropriately.

The actual character buffer is defined in console.c, and is
implemented as a fixed-length character array FIFO, with
pushed characters appended onto the end, and popped char-
acters removed from the front. There are some important
things to note regarding adding characters to the buffer. If
a backspace character is detected, instead of adding it to
the buffer, we actually wish to delete the previous charac-
ter in the buffer. If the buffer has no characters, a detected
backspace is simply discarded. If a newline character is de-
tected, a flag is set so that waiting read requests can receive
their data (this corresponds to the semantics of the UNIX
read command). After a character is added to the buffer,
it can be echoed to the console by using the Kitten printk
function. Finally, if the character caused the buffer to ex-
pand, the add function calls waitq_wakeup to inform any
waiting read operations that data has arrived.

Similarly, the console_inbuf_read function (also in
console.c) first does a spin lock to obtain access to the
character buffer. Once it acquires the lock, if it finds an
empty buffer, the function releases the lock and adds the
current task to a wait queue, to be woken up by the
console_inbuf_add function when data is available, specif-
ically when a newline character is detected. Once a full
buffer is detected (i.e. a newline character is seen), this
function returns up to n characters from the buffer, where
n is the length argument to the read function. These n
characters are deleted from the buffer by shifting the final
(length — n) characters to the left by n in the buffer. The
console_inbuf_read function releases the buffer lock, and
returns the requested characters.

To connect this buffer write/read functionality with the ac-
tual Kitten console, we modified the devfs_console_read
function in devfs.c to grab data from the buffer using
console_inbuf_read. This causes calls to the read system
call to be satisfied from the buffer as expected.

4.3 Racket Collections and the Kitten VFS

Normally we would like to add a virtual disk to our Kitten
VM setup, to prevent us from losing saved state each time
the OS boots and runs Racket. Unfortunately, Kitten does
not support physical disk drives, meaning that all filesystem
access is via the memory-resident virtual file system (VF'S).

This presents a problem in regards to the Racket startup,
since Racket requires a large set of pre-compiled libraries
in order to start up. We pruned these libraries down to a
minimal set of about 1200 compiled racket files, in about
100 (sub)directories.

By specifying command-line options in the Kitten ISO con-
figuration, we can cause Racket to start up on Kitten us-
ing the command “racket -collects /tmp/racket”. This
causes the program to search for these libraries at the path
/tmp/racket on the system. In order to install the racket
collections to this path, we first encode the entire racket
collections directory structure into the Racket binary itself.

Racket binary

Blob main ()

Encoded Dir. Structure ... | Encoded Files ... (<

Figure 2: Racket collections embedded into the
Racket binary

The format of this encoding is as follows:

numFolders (4byte)
numFiles (4byte)
rootFolderPath NULL
folderPath NULL

fileSize(4byte) filename NULL data

That is, the number of folder and files respectively occupy
the first and second words of the blob. This is followed
by a null-terminated string corresponding to the root folder
path (in our case /tmp/racket). After this is a list of null-
terminated folders corresponding to the collections directory
tree, with each folder relative to the root folder. Finally, the
file data is listed, with each file being encodes as a one-word
file size, a null-terminated filename, and the binary file data.

The creation of this encoded blob is performed by a C pro-
gram makeblob.c which we have added into the Racket
build. The Racket Makefile is then modified in the following
way.

racketcgc: blob.o libracket.a ...
$(CC) -o racketcgc blob.o main.o libracket.a ...

blob.o: racketblob
objcopy -I binary -0 elf64-x86-64 -B \
i386:x86-64 racketblob blob.o

racketblob: makeblob
./makeblob ../../../kitten/collects \
/tmp/racket racketblob

makeblob: makeblob.c
gcc -o makeblob makeblob.c

This causes the Racket binary to be built and linked with
the blob, which is now accessible within the Racket main
function via the symbols _binary_racketblob_start,

_binary_racketblob_end, and _binary_racketblob_size.

At the beginning of Racket’s main function, we have added a
check for the “-~expandblob” command-line argument. If this
exists, we delete it from the list of arguments (to prevent it
from being passed to the subsequent Racket command-line
processing), and call the expand_blob function. This func-
tion accesses the blob using the aforementioned symbols, and
first iterates through the directories, creating them using the
mkdir system command. On Kitten, this causes entries to
be created in the virtual file system. After this, it iterates
through the files, and uses the fopen and fwrite system
commands to create and initialize the files with their origi-
nal data. As an integrity check, we then use the fseek and
ftell system commands to check that the newly-created
file’s size matches its size as specified in the blob.

4.4 Kitten Pipes

Kitten previously had no support for pipes. This is prob-
lematic, since Racket uses pipes to implement the message
passing functionality of Places. Thus, we have implemented
pipes, using an approach which ties in closely with the cur-
rent Kitten support for regular files. This allows the file-
specific system commands to work as expected for pipes as
well.

The above diagram shows an overview of our added pipes
functionality. A call to the system pipe command causes
two regular files to be created in the VFS. These files have
paths in /proc which correspond to the process ID of their

Current Task
Filesystem (task.c)
Device Drivers N
(kfs.c) File
(kfs.h)
Read () Read from FD Read End (File | | Pipe Pir
Function [l Descriptor) Pipe Info
~J (kfs.h)
Pipe OO [T create Files Buffer
Function [~ N
\ File
> (kfs.h) Jg
Write ()
Function [———————{ Wriite End (File Pipe Ptr
| Write to FD Descriptor

Figure 3: Our Implementation of Pipes for Kitten

parent process, and the index of the file descriptors. These
files also differ from regular files in that their associated OS
file data structure contains a pointer to a pipe character
buffer. When read or write system calls refer to an file
descriptor, the corresponding file data structure is checked
to see whether it is actually a pipe. If so, the read/write
are satisfied by reading/writing from/to the pipe buffer.

The implementation involved first modifying the file data
structure in kfs.h, and adding a new structure for pipes.

struct pipe {
char * buffer;
int amount; // num chars in buffer
unsigned char eof; // whether an EOF is contained
waitq_t buffer_wait;
spinlock_t buffer_lock;
int ref_count;

};
struct file
{
struct inode * inode;
unsigned char pipe_end_type;
struct pipe * pipe;
// the "pipe" ptr is NULL, it’s not a pipe
};

We then modified the kfs_init_stdio function in kfs.c to
create a directory corresponding to the current process in
/proc on startup.

Also, if kfs.c, we modified the sys_write to first check whether
the specified file descriptor is actually a pipe. If it is, the
request will be satisfied from the pipe character buffer. This
functionality is implemented using an approach similar to
the approach we used in regards to accessing the console
input buffer. First, we grab the lock for the pipe buffer.
Once we have obtained the lock, the function enters a loop,
writing as much as possible into the buffer and then waiting
(using the waitq functions) until the buffer has been emp-
tied enough to write more, until the entire request has been
written.

Similarly, the sys_read function has been modified to check

whether the requested FD is actually associated with a pipe.
If so, the function grabs the pipe buffer lock, and then enters
a loop, reading as much as possible from the buffer, copying
into the result, and subsequently waiting for the buffer to fill,
and then repeating these steps until the requested number
of bytes has been read.

The pipe_end_type can be one of PIPE_END_READ or
PIPE_END_WRITE, identifying the file as the read/write end
of a pipe respectively.

4.5 Racket Memory Issues

Even with all the preceding functionality in place, Racket
was segfaulting (and failing to start) on Kitten. We verified
that the segfault occured on our host OS as well (using gdb),
but it did not prevent Racket from starting on that machine.
The following is a portion of the gdb backtrace.

#0 scheme_gmp_tls_unload (s=0x7ffffb5e50 ...
#1 0x00000000005ef4b3 in done_with_GC (...
#2 0x000000000062bee2 in garbage_collec ...
switching master=0, lmi=0x0) at ./ne ...
#3 0x00000000006318fe in allocate_slowp ...
allocate_size=<optimized out>, gc=<o ...
#4 allocate (type=0, request_size=<opti ...
#5 allocate (type=0, request_size=<opti ...
#6 GC_malloc_one_tagged (s=<optimized o ...
#7 0x00000000005d7813 in scheme_make_st ...
span=9, src=0xal7be8, props=0xal7be8 ...
#8 0x0000000000582eed in read_number_or ...
port=0x7ffff5e51428, stxsrc=0xal7be8 ...
radix=10, radix_set=0, is_symbol=1, ...
indentation=0x7ffff5e51578, params=0 ...

#48 0x000000000058c6¢c3 in scheme_interna ...

#49 0x000000000044ac22 in scheme_top_lev ...
eb=<optimized out>, new_thread=0, dy ...

#50 0x000000000058c49c in scheme_interna ...
cantfail=<optimized out>, recur=0, e ...
magic_sym=0x0, magic_val=0x0, delay_ ...

#51 0x000000000058c5al in scheme_read_sy ...
at ./../src/read.c:2361

#52 0x0000000000432888 in do_eval_string ...
env=0x7ffff5e51bf8, cont=-2, w_promp ...

#53 0x00000000006375f4 in scheme_add_emb ...
at ./../src/startup.inc:134

#54 0x0000000000416b4b in place_instance ...
initial_main_os_thread=<optimized ou ...

It appears that this problem arises during garbage collection,
but with only limited exposure to the Racket garbage collec-
tor, we were not able to pinpoint the problem. We did notice
that the default Kitten page fault handler generated an unre-
coverable error, so in an attempt to fix the problem, we mod-
ified the Kitten page fault handler to send the SIGSEGV
signal to the offending task. Racket has a SIGSEGV han-
dler, which should take care of the problem, but although
this allowed Racket to initialize further, a subsequent seg-
fault caused the task to hang. Finally, we switched from the
Racket 3M garbage collector to the conservative garbage col-
lector (CGC), and this solved the problem.

4.6 Other System Calls

Some other unimplemented system calls caused the Racket
startup to fail, so we implemented these in Kitten:

e getrlimit. Specifically, the RLIMIT_AS flag was not
supported, which corresponds to a request for the pro-
cess address space size. We added basic support by
causing this option to return RLIM_INFINITY, inform-
ing Racket that it has an arbitrary amount of memory
space.

e waitd. Specifically, the process identifier (PID) “0”
was not supported, which caused Racket’s places ini-
tialization to fail. We fixed this by simply returning
the ID of the current process.

4.7 Kitten / Racket Memory Limits

The Kitten VFS functionality causes created files to occupy
a fixed amount of space. Thus, we found it necessary to
increase the specified size in in_mem_fs.c from 512 % 8 to
512 % 800, in order to accomodate the largest Racket collec-
tion file. On a related note, we needed to increase the total
kernel memory pool, since the VFS is stored in kernel mem-
ory. We did this by changing the kernel memory pool limit
from 64 MB to 1024 MB in bootmem.c. We also needed to
increase the initial task heap size from 32 MB to 200 MB by
modifying init_task.c, and the initial task stack size from
256 KB to 1 MB.

S. TEST SETUP

In order to test the proper functionality of the Racket run-
time operating within Kitten, we embedded Kitten as a vir-
tual machine guest. Our host machine is running Fedora 15
(2.6.38 kernel), and has 4GB of RAM and an Intel Core i3
processor at 4x1.3GHz.

5.1 Kitten as a VirtualBox Guest

VirtualBox setup was fairly straightforward with respect to
Kitten. We created a new virtual machine, and pointed it
to the Kitten ISO image. We gave the machine 2048MB of
memory (IO APIC enabled) and 1 virtual core (PAE/NX
enabled). We also enabled the VT-x and nested paging op-
tions. For other settings, we gave the machine 6MB of video
memory, and selected PIIX4 for the IDE controller type.
We disabled networking and pointed the serial port at a lo-
cal file.

Kitten can then be started by pressing “start”, and output
from Kitten is sent to either the console or the local file,
depending on the output mode specified during the Kitten
build

5.2 Kitten as a Palacios Guest

Kitten can also be set up to function as a guest within Pala-
cios. The setup is similar to the above, except that Palacios
uses an XML file instead of a graphical interface for speci-
fying machine configurations. We created a file kitten.xml
based on the guest_os.xml configuration that comes with
Palacios. We used this to specify 1536MB memory and 2
cores. We also specified the location of the Kitten ISO for
the boot disk image. Finally, we enabled I0 APIC and the

SERIAL and CHAR_STREAM virtual devices. Then, we
built the Palacios VM image and executed the following
command in the utils/guest_creator directory:

./build_vm kitten.xml -o kitten.img

At this point, Palacios can be started with the following
commands:

sudo insmod v3vee.ko

sudo v3_mem 2048

sudo v3_create build/guest_creator/kitten.img test
sudo v3_launch /dev/v3-vmO

Currently, VGA output does not seem to work properly in
Palacios, but if Kitten uses the serial port for output, we
can use the following command to monitor the port:

sudo v3_stream /dev/v3-vmO streaml

6. RESULTS

We succeeded in running Racket interactively and non-interactively

on top of a Kitten VirtualBox (or Palacios) guest. We con-
firmed that our modifications allow futures and places op-
erate as expected by running the following simple Racket
demo programs.

This is the file test.rkt, which demonstrates some basic
Racket output functionality.

(let ([x 12345])
(begin (print x)
(begin (printf "\nHello from Racket\n")
"This is the return value\n")))

This is the file test2.rkt, which demonstrates some simple
usages of futures/places

#lang racket
(let ([f (future (lambda () (+ 1 2)))1)
(print (list (+ 3 4) (touch £))))

(let ([pls (for/list ([i (in-range 2)1)
(dynamic-place "tmp/racket/place-worker.rkt"
’place-main))])
(for ([i (in-range 2)]
[p plsl)
(place-channel-put p i)
(printf "$>>>$Place message: ~a\n"
(place-channel-get p)))
(map place-wait pls))

This is the file place-worker.rkt used by the dynamic place
example

#lang racket

(provide place-main)

(define (place-main pch)

(place-channel-put pch
(format "Hello from place ~a"
(place-channel-get pch))))

7. FUTURE WORK
7.1 Memory sharing among multiple VMs

It is very common to deploy multiple identical virtual ma-
chines on one host executing similar jobs. Our stack of kitten
and racket gives a good example. When deployed, we can
create a virtual machine for each user needs a racket en-
viroment. In such configurations, there are many data are
identical in the virtual machines. Typical cases are the guest
OS’s code and loaded library. So it can save some memory
space if we share these portion of data among multiple vir-
tual machines. Also, sharing memory can also improve cache
ultiliaztion and enhance the overall performance.

Virtual Machine Virtual Machine

Virtual Machine Virtual Machine

|
|

App Data App Data

7 App Libs & Code

05 code

App Data App Data

App Libs & Code App Libs & Code App Libs & Code

[i rweaweren |

05 code 05 code 05 code

‘ Virtual Machine Monitor ‘ ‘ Virtual Machine Monitor ‘

Figure 4: How shared memory helped system

7.1.1 Identifing sharable memory

The challenge of sharing memory among VMs is acutally
its first step. Actually it is very hard to dynamicly identify
sharable memory from the starting of VM boots up. Be-
cause a given memory will be written several times before
it become stable. For example a memory page which turn
out to be used as a code page for a common library, will
be first initialized by the guest OS, and loaded library data
on it, and rewrited several times to link the library. If the
identification is implemented dynamically, it will first iden-
tify such page private and then shared some time after the
page become stable.

To avoid this challenge, we propose to start VMs from a
checkpoint. We have already implemented start racket envi-
ronment automatically after kitten boot up. We could make
a checkpoint after the system is boot up and start other vir-
tual machines from this checkpoint. Thus from the starting
point, the guest system has load a bunch of necessary library
for sharing.

When we have a started VM with libraries loaded, we need
to identify the memory for share. There are several differ-
ent appoarches. The first one is simply mark all the guest
memory space as shared and then do a copy-on-write to
make the page private when guest system trying to write
that memory space. However, the majority of the memory
is either private or unused. So it will add much overheads
with the introdution of copy-on-write mechanism. the sec-
ond one is by human analysis. We could manually mark up

the memory pages capable for sharing. This appoarch can
be very accurate and high efficiency when executing. How-
ever, it will take a lot of human work and not practical when
we are doing on other type of guest systems. The third ap-
poarch is mark it with the knowledge of guest systems mem-
ory mapping. Since the VMM has a complete knowledge of
the guest’s page table. It can walk through guest’s page ta-
ble and make decisions about which page can be shared and
which can not. There are few problems need to be addressed
here as well. The first one is that one guest system may have
multiple page tables, the other is that guest OSs may map
the whole physical memory writable for its own use. How-
ever, just adding the pages that mapped read-only to user
space or kernel in at least one page table entry should be
accuracy enough.

7.1.2 Sharing the memory among multiple Virtual Ma-

chines
We propose to share the memory using Copy-on-write mech-
anism. Copy-on-write is commonly used on operating sys-
tems to fork new processes and share common data. Here
we use it similarly in VMMs to share data among multiple
virtual machines.

When VMM is creating a new VM from a checkpoint, if a
memory page it is going to allocate is identified as sharable,
it will first copy the data to it and then map it read-only
to guest system and mark it as a copy-on-write page. If a
new vM from the same checkpoint is created, the VMM will
simply map the page to the same physical page with read-
only privilege and marked as copy-on-write. Thus the data
in this physical page is shared among the VMs.

In most cases, the shared pages will not be written by the
VMs. However, if one of the shared pages is going to be
written by one of the VMs, the control will be passed to the
VMM. The VMM can then copy the data of this shared page
to a new page, and map it to the VM with write previlege to
replace the shared page. Note that the shared page is still
shared among other VMs except the VM trying to write
it. Since the shared pages is supposed not to be written
by guest systems, this data copying should not introduce a
significant overhead.

7.2 Ballooning

Racket’s runtime environment will do garbage collection,
which means it will run with a tight memory usage. There-
fore, most of its runtime it will be far less memory usage
than the total memory size given by the VMM. Such gap
will event be greater if there are multiple VMs running simu-
tanusly. Ballooning [14] is designed to solve this problem by
notifying VMM unused memory.

The idea of ballooning is let guests talks with host about
the actual memory it is using. However, in order to let bal-
looning portable to variaty of operating systems and easy to
implement, ballooning is implemented as an kernel process
that require physical pages(seen by the guest) using guest
OS’s interface and never use the physical pages for them.
Thus can reduce the amount of work when implementing
ballooning in new operating systems and leave the problem
simple. The ballooning process will require more physical

pages when the guest system runs at a low memory usage
and release them if the guest sytem goes high. The balloo-
ing process will talk with the VMM about the address of the
pages it get from the guest OS and the VMM thus can mark
those pages as free and use them in other places.

Guest Memory m
pa?a out

balloon) 8

inflale

Guest Memory

Guest Memory

may
page in

€3 0

Figure 5: How ballooning adjust the memory usage
(http://static.usenix.org/events/osdi02/tech/full papers/
waldspurger /waldspurger_html/node6.html)

deflate

Note that it is still possible that the ballooned physical page
is touched by guest system. Therefore VMM should handle
this kind of cases. When the guest system try to touch the
ballooned physical page, the host machine will generate a
fault that could be handled by VMM. Thus VMM can now
map a new physical page for the guest system and return to
the guest.

8. CONCLUSIONS

We have demonstrated that it is possible to port a paral-
lel language runtime to a minimal OS. More generally, we
have demonstrated that parallel language runtimes can be
supported with only a minimal set of OS functionalities,
namely threads and pipe, and etc. We have also shown
that a parallel language runtime can run successfully in a
virtual machine environment like Palacios. The details we
have presented are a useful (and necessary) first step in in-
vestigating the interaction between such a language runtime
and the (virtual) machine.

9. ACKNOWLEDGMENTS

We would like to thank the EECS 441 teaching assistants for
their help regarding configuration of the tools and develop-
ment environment during the project. Secondly, we would
like to thank Kevin Pedretti for his helpful advice regard-
ing the Kitten OS. Last but not least, we especially wish
to thank Professor Peter Dinda for developing/teaching this
useful class, for being readily available to answer all of our
questions, and for offering us the opportunity to work on
this project. It has been a very educational experience, and
allowed us to develop some skill in programming at the OS-
and VMM-level.

10. REFERENCES

[1] define-type, 2012. http://docs.racket-lang.org/ts-
reference/special-forms.html?q=define-

type&q=macro&q=places# (form._((lib._typed/racket/base..rkt). def

type)).
[2] Kitten release, 2012.
http://www.cs.sandia.gov/web1400/1400_download.html.
[3] macro, 2012. http://docs.racket-

lang.org/guide/macros.html?q=macro&q=places# (tech._macro).

[4] match, 2012. http://docs.racket-

lang.org/reference/match.html?q=macro&q=places# (form._((lib._ras

[5] Racket, 2012. http://racket-lang.org.
[6] Racket (programming language), 2012.

http://en.wikipedia.org/wiki/Racket_(programming language).

[7] typed racket, 2012. http://docs.racket-lang.org/ts-
guide/index.html?q=define-type&g=macro&q=places.

[8] Virtual machine, 2012.
http://en.wikipedia.org/wiki/Virtual_machine.

[9] J. Lange, P. Dinda, K. Hale, and L. Xia. An
introduction to the palacios virtual machine
monitor—version 1.3. Technical report, Northwestern
University, Nov. 2011.
http://www.v3vee.org/palacios/palacios-1.3-tr.pdf.

[10] K. Pedretti. Kitten: A lightweight operating system
for ultrascale supercomputers, 2011.
https://software.sandia.gov/ ktpe-
dre/kitten_overview.pdf.

[11] Sandia Corporation. Kitten lightweight kernel, 2011.
https://software.sandia.gov/trac/kitten.

[12] J. Swaine, K. Tew, P. Dinda, R. B. Findler, and
M. Flatt. Back to the futures: incremental
parallelization of existing sequential runtime systems.
In Proceedings of the ACM international conference on
Object oriented programming systems languages and
applications, 2010.

[13] K. Tew, J. Swaine, M. Flatt, R. Findler, and
P. Dinda. Places: adding message-passing parallelism
to racket. In Proceedings of the 7th symposium on
Dynamic languages, pages 85-96. ACM, 2011.

[14] C. A. Waldspurger. Memory resource management in
vmware esx server. SIGOPS Oper. Syst. Rev.,
36(SI):181-194, Dec. 2002.

APPENDIX

A. DELIVERABLES

All of our code has been pushed to the repository. We
have maintained patches containing the work we did in the
Kitten and Racket trees. For Kitten, the following Mercu-
rial patches can be applied sequentially starting from the
1059:c0b5e0d310e0 changeset:

. 01_console_read.patch
. 02_syscalls.patch

. 03_pipes.patch

. 04_limits.patch

T s W N

. 05_more_limits.patch

For Racket, the following Git patches can be applied sequen-

tially starting from the 98e06248b50ad35420970120fe70bb8ea7423f9c

commit:

1. 0001-Some-changes-for-static-compilation.patch
2. 0002-Tools-for-packaging-extracting-a-filesystem-blob-for.patch

3. 0003-Bug-fixes-and-documentation-for-the-Kitten-blob-
func.patch

4. 0004-Added-support-for-packaging-extracting-collections-
f.patch

Other items pushed to the repository include the following:

e Racket test files
1. place-worker.rkt
2. test.rkt
3. test2.rkt
4. test3.rkt

e Detailed setup instructions

1. kitten_setup.txt
2. racket_setup.txt
3. palacios_fedora_setup.txt

