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ABSTRACT

Android is a popular Linux-based smartphone operating sys-
tem designed by Google. One of the primary adantages of
Android is its relatively high level of security, centered on
Unix processes and an explicit permissions system. Unfortu-
nately, Android devices are still vulnerable to several types
of attacks, a particularly concerning one being privacy leaks.
Since devices store a large amount of sensitive information,
it is important that this information not be leaked via in-
ternet connections or SMS messaging. We propose an inte-
grated system to detect such privacy leaks via dynamic taint
analysis. We have built a PC-based Java application to in-
strument apps with taint propagation functionality, and a
proof-of-concept Android app to demonstrate that this sys-
tem could conceivably be run on the device. The results of
running several instrumented apps show that the system is
effective at detecting privacy leakage with relatively minimal
overhead.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks|: General—
security and protection; D.4.6 [Operating Systems]: Secu-

rity and Protection—invasive software; D.3.4 [Programming

Languages]|: Processors—parsing, code generation

Keywords
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1. INTRODUCTION

Smartphones are becoming more pervasive in our lives, with
the global number of users increasing at a tremendous speed.
Smartphone shipments have increased 42% between 3rd Quar-
ter 2010 and 3rd Quarter 2011, according to research data
from Gartner. Smartphones are powerful and versatile in
their functions and smartphone users are integrating the de-
vices into their daily lives. For example, one common use is
to store and manage contact information. In this regard, it

can store not only phone numbers, but also geographical ad-
dresses, email addresses, and profile pictures of friends and
family members.

The functionality of smartphones is further expanded by en-
abling third-party developer applications or improved sup-
port of web applications. Users can now use their smart-
phones to manage bank accounts or provide navigational
directions. It is slowly taking over some of the traditional
roles of the personal computer by providing users with more
convenience and immediacy. However, the expanding of
functionality and increase in versatility has dramatically in-
creased the risk of malicious device attacks, primarily be-
cause they contain more valuable resources, but also because
there are an increasing number of attack methods.

Android is designed to have a robust set of built-in secu-
rity mechanisms [14], but experience and research has shown
that this system is often insufficient to protect against some
types of attacks [15]. One of the more damaging of these is
stealing personal sensitive information stored in the device.
It is clear that smartphones can contain large amount of sen-
sitive information, e.g. personal information of all contacts,
content of all past messages and emails, or account creden-
tials of car rental accounts or bank accounts. In addition to
these direct sources of information, attackers may be inter-
ested in more subtle information available from the device,
e.g. the current geographical location identified by GPS or
base station triangulation, audio recording of phone conver-
sation or the immediate surrounding, or internet traffic data
of the browser or any application.

This problem is becoming increasingly serious as malicious
apps continue to crop up, sometimes even appearing in offi-
cial marketplaces [20]. Users who frequent third party app
stores may encounter official apps that have been repack-
aged with malicious intent [18]. Unfortunately, commonly-
available anti-malware apps typically have a low detection
rate in these types of instances [19]. Furthermore, users
are often unable or unwilling to manually keep track of how
all the sensitive information is being used by third party
applications. In some cases this requires a very high level
of technical knowledge and a good amount of time for one
to manage it. Our system seeks to fill this gap by using
dynamic taint analysis [13] to keep track of how the sensi-
tive information is being used inside an Android app. The
system is written entirely in Java, and so could easily be
compiled /deployed to run as an Android app. The system



decompiles a given questionable Android app, inserts taint
tracking functionality into the code, and recompiles it into
a behaviorally-equivalent app. When this new instrumented
app is run, it produces alerts whenever sensitive information
leaves the device, e.g. over the internet or through SMS.

The rest of this paper is structured as follows. In Section
2 we compare our work with related work. In Section 3
we present our system and taint-propagation/analysis tech-
niques. In Section 4 we evaluate the performance of our
system. In Section 5 we present the taint tracking results.
Finally in Section 6-7 we discuss future work and conclude.

2. RELATED WORK

There are many different techniques for Android malware
detection/defense. Straightforward approaches include uti-
lizing Android permissions and encrypting sensitive content
[12], but these approaches may have poor coverage. Other
approaches seek to view the app as a box and barrage it
with inputs in an attempt to determine its behavior [11].
More complex approaches use techniques such as symbolic
simulation [1] to analyze application bytecode. In contrast
to these, our system uses techniques from the area of dy-
namic analysis. This approach has the advantage of being
very fast, since the analysis is performed while the program
is executing.

Other applications of dynamic analysis have included dy-
namic monitoring of permissions usage using runtime-level
systems [3], and real-time permission revocation [2]. As far
as we know, there has been no work on the feasibility of
dynamic taint analysis for privacy protection that is both
user friendly and agnostic to special permissions. Taint-
Droid [6] is conceptually similar to our system in that it
is a real-time dynamic taint tracker for Android with the
explicit goal of protecting users from information leakage.
However, TaintDroid requires the user to root or jailbreak
their phone to run it. We believe that regardless of the ca-
pabilities of the TaintDroid system, it is unrealistic to ask
for special permissions and rooting or jailbreaking of phones
to achieve security. Our system prototype can achieve sim-
ilar types of detection while it can still be feasibly run on
an Android device with standard permissions. To install
the TaintDroid system, the user is required to have an un-
locked boot loader and a development computer that can
build the android source code. In many cases, unlocking
a boot loader will void the user’s warranty, and compiling
the android source code is infeasible for the average Android
user. Furthermore, installing TaintDroid requires the user
to complete eight different steps on the command line, some
of which include compilation. This limits the applications
of this system to computer programmers or people who are
very computer-savvy. Although this segment of the popu-
lation does need some security protection, these users are
presumably the least likely to download suspicious applica-
tions containing information leakage or malware. Thus, our
system focuses on users with only a basic level of computer
skills, and provides them with a simple tool to protect them-
selves from information leaks.

In contrast to dynamic analysis, others have approached An-
droid security problems from the standpoint of static analy-
sis. These approaches typically involve developing a formal

semantics [4] for Android programs and then using fixpoint
operations (or over-approximations thereof) to show that
the semantics imply a permissions violation [10] [9] or pri-
vacy leak [7], or to compute a helpful invariant regarding
the code [16]. A disadvantage of this approach is that the
analysis can be very slow, especially for programs with many
execution paths.

Some of these static analysis tools also require implementa-
tion at the OS-level [8] or Android runtime level, again run-
ning into the usability problem we mentioned. For example,
PiOS is a static analysis information leak tracker for the
iOS platform [5] with similar requirements to TaintDroid.
Although the PiOS system is not intended for the user to
install as a defense against malware, it is similarly difficult
to install if the source were to be released. Even if the source
was not released, the system depends on the phone being jail
broken, which as we have mentioned, is not always a feasible
approach. This leaves applications unchecked when Apple
presents update to defeat the current jail breaking scheme.

Because we do not modify the android runtime like some
of these other systems, we are currently forced to treat an-
droid system calls as a black box in which we assume al-
ways propagate taint values. This means that we are over-
approximating the actual program semantics, which could
lead to false positives. But it is possible that in the future
we could adopt a hybrid static/dynamic approach for this
case. Since android is open source, we have the ability to de-
compile the android system libraries (which we have already
tested), and statically analyze them to obtain the taint prop-
agation semantics for all android library functions. We have
designed our system so that in the future we can put these
statically-determined semantics into our taint propagation
library, resulting in an even more accurate taint propaga-
tion system.

3. DETECTING PRIVACY LEAKS

We have implemented a PC-based prototype of our system
in Java. We have verified that the Java-powered disassem-
bler/assembler used by our system is able to run via an
Android app, but due to time constraints, we decided to do
development/testing on the PC. Conceivably the entire sys-
tem is fully Android-compatible, and could thus be deployed
as a single Android app, but we leave this for future work.

3.1 System Overview

The overall goal of our system is to instrument the app under
consideration with taint propagation functionality which will
cause the taints to be set/propagated as the app runs on the
Dalvik VM of the device. The core of this functionality is
implemented in the highlighted boxes of Figure 1.
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Figure 1: System Architecture
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First, the app under consideration is scanned for its APK
file. This file is then disassembled into its component Dalvik
assembly files. After this, our system parses the assembly
code, and inserts the appropriate taint propagation assign-
ments or calls into the taint propagation library correspond-
ing to each instruction. The resulting instrumented assem-
bly code is assembled together with the taint propagation
library into a new APK file. Finally, the instrumented APK
file is signed using a user-specified public/private key pair.

This final APK file can then be executed as a normal app
on the Android device. The taint propagation library will
track the taints and inform us of privacy leaks via the device
log.

3.2 App Decompilation/Recompilation
Apktool' is an APK file decoder/encoder which essentially

functions as a frontend for the baksmali/smali® (dis)assembler.

To generate assembly code from an Android app, we call ap-
ktool decode which extracts the manifest information and
assembly code into a folder. The code in this folder can then
be modified/instrumented, and then we call apktool build
to reassemble everything into a new APK file.

During the decompilation, an important issue arises in re-
gards to the parameter registers passed to methods, due
to the fact that our code instrumentation must use new
temporary local registers. In the Dalvik VM, a method’s
k parameters correspond to the last k registers in its set of
locals. Normally, the baksmali decompiler uses the names
Po, P1, ---, Pk—1 for these k registers, meaning that if the spec-
ified number n of local registers increases, p; will now cor-
respond to a different local register v;. This means that we
cannot simply increase the local register count for a method
without causing the p; to refer to incorrect locations (and
typically causing the app to crash). We solve this problem by
running baksmali -no-parameter-registers to force the
assembly code to use the real v; register names for all reg-
isters, including the parameters. Then, we can increase the
local register count by m, if we also move the final k regis-
ters (parameters) to the location where the uninstrumented
code was expecting them. That is, we must do move in-
structions move v;_,,, v; where the v; range over the last
k local registers. After this, we are free to use the last m
local registers however we want.

Recompilation takes a similar path to decompilation, this
time using the command apktool build to package the man-
ifest info and assemble the modified code back into a new
APK file.

3.3 Code Instrumentation

To instrument the code with taint analysis information, we
have developed a Java program which scans the decompiled
APK folder for all files. It then iterates through these files
and performs the following steps on each one:

1. If the file is not an assembly file, leave it unmodified

"http://code.google.com/p/android-apktool /
Zhttp://code.google.com/p/smali/

2. Otherwise if the file is an assembly file, iterate through
each line (instruction) and append the assembly code
which corresponds to the taint propagation semantics
for that instruction.

To consolidate the taint propagation semantics into one place,
each handled instruction is instrumented by a call into the
taint propagation library which passes the instruction’s pa-
rameters as parameters in the method call. For example, an
sget-object v;, SomeField instruction is instrumented by
subsequently calling the Taint.updateTaintSgetObject(v;,
“SomeField”) method. The taint propagation library then
updates the taint values of the parameters accordingly.

Currently, we instrument two types of instructions in this
way, specifically sget and invoke. Since this is only a subset
of the full Dalvik instruction set®, our system may give false
positives. It is straightforward to instrument the remainder
of the instructions, and we leave this as future work.

3.4 Taint Propagation

The taint propagation library has three functions:

1. Define the sensitive fields which correspond to taint
sources

2. Keep track of taint information for live objects in the
program

3. Generate an alert when tainted information leaves the
device

The first function is implemented as a lookup table of field
names. When field get instructions (such as sget) are re-
ceived, the field name is looked up in the taint source table.
If it exists, we will know the taint value for the recipient of
the field’s data.

The second function involves keeping a thread-safe global
store of taint information. This is basically a hashtable
which maps objects to integers, and thread safety is en-
sured by using synchronized methods for the table access
functionality. This function also requires specification of the
taint semantics for each instrumented instruction. The taint
library handles this by providing an “update” method call for
each type of handled instruction. One important exception
is method calls into the Android runtime (i.e. code which
has not been instrumented by our method). For this, the
taint library uses the following (over-approximating) taint
semantics:

Vj, T(pJ) = UT(pl)

where the p; range over all method parameters. That is,
each parameter acquires the union of the taints of all other
parameters.

The third function is implemented by checking the method
names on invoke instructions against a list of leak destina-
tions. If the method is a leak destination, and any of the

3http://source.android.com/tech/dalvik /dalvik-
bytecode.html




parameters has a taint value, we consider this to be a pri-
vacy leak, and log the source and information regarding the
leak destination.

3.5 Leak Detection

The leak detection is performed by the embedded taint prop-
agation library as the instrumented code runs as a normal
app on the device.

Instrumented App

Thread 1

Taint Propagation
Library

Thread 1 /

Dalvik VM —>» System Log

)

Smartphone OS (Linux)

Figure 2: Leak Detection

The taint propagation library records flagged leaks to the
system log, which we can view/record. In a production app,
this information could be displayed as an alert to the user.

3.6 APK Signing

Android APK files must be signed before they can be loaded
onto a device (or emulator). Recompilation of APK files via
apktool destroys the original signature, so we must sign the
generated APK file. SignAPK.jar is a simple third-party
APK signer available in various places on the internet which
comes with a key pair for easy signing of APK files*. There
are other ways to do this which are endorsed by the Android
documentation, but the advantage of the JAR file is that it
is easy to use and can potentially be run on an Android
device.

4. EVALUATION

We evaluated our system using a prototype Java implemen-
tation running on laptop. The machine specs were as follows:
Ubuntu Linux (64bit), 3.8 GB RAM, 1.3 GHz Intel Core i3
processor (dual core, virtualizable to 4 cores). We installed
the Android SDK, and created a new device in the Emulator
based on the Google APIs, platform 4.0.3, level 15.

From colleagues, we obtained an unknown set of 110 free
Android apps (APK format) from the Android marketplace.
These apps were not expected to be malicious in any way.

4.1 File Processing Performance

First we ran our code instrumentation on each of the apps.
We measured the time of each of the steps (decompilation,
code instrumentation, recompilation, signing) in millisec-
onds using the Linux system date command. Our code
instrumentation program printed information regarding the
number of files/lines processed for each app. One app

“http://android-dls.com/wiki/index.php?title=Generating_Keys

(com.opera.mini.android) failed to recompile correctly af-
ter our code instrumentation. Time did not permit us to
investigate the source of the problem. The time results of
this step for each of the remaining 109 apps are recorded
in Figure 3. The overall processing time is shown clustered
around the upper line, and the code-instrumentation time is
shown by the lower cluster. It can be seen that the distri-
bution is roughly linear with respect to the number of lines
of processed Smali assembly code.
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Figure 3: File Processing Performance

4.2 Taint Analysis Performance

Secondly, we selected 25 instrumented apps to run the taint
analysis on. We were unable to analyze all 109 due to time
constraints and the difficulty of automating interaction with
the emulator/apps. For each of the selected apps, we in-
stalled it to the emulator using the adb install command,
started output logging using the adb logcat command, and
started the app via the adb shell am start -W -S <pack-
age>/<activity> command. This final command printed
the number of milliseconds needed to start up the app, or
timed out (presumably at 10s). After each instrumented
app, we uninstalled it and did the same for the correspond-
ing original app. We found that 2 of the 25 instrumented
apps crashed upon startup. The relative times are shown in
Figure 4, with points falling below the line showing slower
instrumented code with respect to the original code. It can
be seen that the results are clustered around the y = x line,
with roughly twice as many instances falling below the line
as above. It is important to note that this is only a rough
estimate of instrumented code performance, since it only ex-
amines a fraction of the program’s execution, but still this
hints that for the non-crashing examples, performance is re-
duced but acceptible.

4.3 Correct Operation

We checked that our code instrumentation preserves the
proper app behavior by manually examining the fm.last.
android app. Using an already-created Last.fm account, we
were able to successfully log in using our credentials via the
instrumented app, browse through the different settings, and
listen to streaming music.

We are still investigating why one app failed to recompile
correctly, and why two instrumented apps crashed in the
emulator, but we suspect that this is due to a infrequent
Dalvik construct being improperly used in instrumentation.
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Figure 4: Taint Analysis Performance

S. RESULTS

Before running the taint analysis for the 25 aforementioned
apps, we defined two static fields as tentative taint sources:

e Landroid/os/Build;->MODEL:Ljava/lang/String;

e Landroid/os/Build$VERSION;->
RELEASE:Ljava/lang/String;

These correspond to the device model number and the An-
droid version respectively. These fields are perhaps not the
most sensitive information, but they do help identify the
phone user in some way, and they do provide malicious apps
with the ability to customize attacks [17]. Thus we use them
as a basic example. We also define three leak destinations:

e Ljava/net/URL;->
openConnection()Ljava/net/URLConnection;
(if the connection URL is tainted, this is a leak)

e Ljava/net/HttpURLConnection;->
setRequestMethod(Ljava/lang/String;)V
(if the String is tainted, this is a leak)

e Ljava/net/HttpURLConnection;->
setRequestProperty(Ljava/lang/String;
Ljava/lang/String;)V
(if the second String is tainted, this is a leak)

After running the analysis on the 25 apps, we examined the
log files to find the following results. We found that 8 of the
25 apps contacted a website(s) during startup, and 6 of these
involved a leak with respect to the above specifications.

In this instance, the majority of the communications flagged
as leaks appear to be benign, since they involve a server
owned by the maker of the app, but in two instances (com.
cdroid.appinstaller and mobi.androidcloud.app.ptt.client), we
can see that the device model number is being leaked to
third-party ad services. This may be worrisome for some
users, especially since the latter (TiKL Touch to Talk) de-
scribes their app as “Completely FREE. No hidden fee or
ads.” Interestingly, the former (Cdroid App Installer) seems

Shttps://play.google.com/store/apps/details?id=mobi.
androidcloud.app.ptt.client&hl=en

Table 1: Detected Leaks of MODEL
App Name MODEL

com.cdroid.appinstaller | http://mm.admob.com
http://open.api.ebay.com/
http://mobilemotd.ebay.com/
http://rover.ebay.com/
http://t0.tiles.virtualearth.net/
http://tokasiki.com

com.ebay.mobile

com.microsoft.bing
com.tokasiki.android.
voicerecorder
fm.last.android
mobi.androidcloud.
app.ptt.client

http://cdn.last.fm/
http://data.mobclix.com/

Table 2: Detected Leaks of RELEASE

App Name MODEL
com.cdroid.appinstaller
com.ebay.mobile http://open.api.ebay.com

com.microsoft.bing
com.tokasiki.android.
voicerecorder
fm.last.android
mobi.androidcloud.
app.ptt.client

http://t0.tiles.virtualearth.net/

http://cdn.last.fm/

to have been removed from the Google marketplace since the
time our set of apps was obtained.®

6. FUTURE WORK

In the future, we wish to develop a more detailed set of taint
propagation semantics, covering each of the Dalvik instruc-
tions.

As we mentioned in the Related Work, we would also like to
develop a tool to statically analyze Android runtime libraries
to give us more accurate semantics for these methods.

7. CONCLUSION

Our system has demonstrated that it is possible to empower
the user to keep track of the sensitive information without
the need of special permissions or rooting. This will allow
a broader user base to utilize this tool. It will increase the
level of trust between the user and third party applications
because the user will be provided with better information
regarding the app. It will deter any malicious application
trying to steal sensitive information from the user. Our tech-
niques of code instrumentation and taint tracking are exten-
sible, and the fact that analysis is done at the bytecode level
enables us to track complex behavior even in large android
applications.
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APPENDIX
A. SOURCE CODE

We are maintaining a private Git repository containing the
latest version of the source code. Please contact the authors
if you wish to obtain access to this repository. The current
code consists of the following files:

e Makefile

o Main.java

e Parser.java
e Code.java

e Type.java

e Utils.java

e Taint.java

e Time.java

If you have the Android SDK installed, with all utils on the
search path, as well as apktook, smali, baksmali, signapk’
on the search path, you can decompile an app apps/myapp . apk
by typing make APP=myapp decompile, and generate the in-
strumented code by typing make APP=myapp code, generate
a new recompiled/signed APK by typing make APP=myapp.
You can do all three steps at once by typing make APP=myapp
complete. Finally, you can install it to the emulator by
typing make APP=myapp install, and uninstall using make
APP=myapp uninstall.

"This should be a shell script which starts the SignApk.jar
file using a key pair



